A= |x-1|-2016
tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|4x-1/4|+2016
Ta có: |4x-1/4|>=0
=>|4x-1/4|+2016>=2016 Hay A>=2016
Nên giá trị nhỏ nhất của A là 2016 khi
4x-1/4=0
4x=0+1/4
4x=1/4
x=1/4:4
x=1/16
Vậy GTNN của A là 2016 khi x=1/16
B=2014-|3x-1/5|
Ta có: |3x-1/5|>=0
2014-|3x-1/5|<=2014 hay B<=2014
Nên GTLN của B là 2014 khi:
3x-1/5=0
3x=0+1/5
3x=1/5
x=1/5:3
x=1/15
Vậy GTNN của B là 2014 khi x=1/15
GTTĐ luôn >= 0
Áp dụng ta có
A = l 4x -1/4l + 2016 Nhỏ hơn bằng 0 + 2014 = 2014
Vậy GTNN của A là 2014 khi 4x - 1/4 = 0 => x = ...
TA có
B = 2014 - l 3x - 1/5l lớn hơn bằng 2014 - 0 = 2014
Vậy GTLN là 2014 khi 3x - 1/5 = 0
Ta có | x + 1 | \(\ge\)0 \(\forall\)x
=> 5 . | x + 1 | \(\ge\)0 \(\forall\)x
=> 2018 + 5 . | x + 1 | \(\ge\)2018 \(\forall\)x
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy, GTNN của A = 2018 khi và chỉ khi x = -1
ta có :|x+1| >=0
=> 5|x+1|>=0
=> 2018+5|x+1|>= 2018
dấu = xảy ra khi |x+1|=0
x+1=0
x=-1
vay gtnn cua bieu thuc tren la 2018 khi x=-1
Với mọi x ta có :
\(\left|x+5\right|\ge0\)
\(\Leftrightarrow\left|x+5\right|+5\ge0\)
\(\Leftrightarrow A\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy..
Vì |x-3|>/=0
=>|x-3|+1>/=0+1
=> A>/=1
dấu "=" xảy ra khi<=>|x-3|=0
x-3=0
x=0+3
x=3
Vậy min A=1
Khi x=3
A = | x - 3 | + 1
Vì | x - 3 | \(\ge0\forall x\)
=> | x - 3 | + 1 \(\ge1\forall x\)
=> A \(\ge1\forall x\)
=> A = 1 <=> | x - 3 | = 0
<=> x - 3 = 0
<=> x = 3
Vậy A min = 1 khi x = 3