\sqrt{x}>2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIAO LUU
\(Lim_{x\rightarrow vc}=\frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\\ \)
\(\Leftrightarrow Lim_{x\rightarrow vc}=\frac{\sqrt{\frac{x+\sqrt{x}}{x}}}{\sqrt{\frac{x+\sqrt{x+\sqrt{x}}}{x}}+1}=\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{x+\sqrt{x}}{x^2}}}+1}\\ \)
\(\Leftrightarrow\frac{Lim}{x\rightarrow+vc}=\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{\sqrt{x^3}}}}+1}=\frac{\sqrt{1+\frac{1}{+vc}}}{\sqrt{1+\sqrt{\frac{1}{+vc}+\frac{1}{+vc}}}+1}=\frac{\sqrt{1+0}}{\sqrt{1+\sqrt{0+0}}+1}=\frac{1}{2}\)
a: \(=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{4xy}{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
b: \(=\sqrt{x}+\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)-2\sqrt{y}\)
\(=\sqrt{x}-\sqrt{y}-\sqrt{x}+\sqrt{y}=0\)
c: \(=\dfrac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}\cdot\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
\(x+\sqrt{x}=\sqrt{x}\left(\sqrt{x}+1\right)\\ x-\sqrt{x}=\sqrt{x}\left(\sqrt{x}-1\right)\\ a+3\sqrt{a}-10=a+5\sqrt{a}-2\sqrt{a}-10=\sqrt{a}\left(\sqrt{a}+5\right)-2\left(\sqrt{a}+5\right)=\left(\sqrt{a}-2\right)\left(\sqrt{a}+5\right)\)
\(x\sqrt{x}+\sqrt{x}-x-1=\left(x\sqrt{x}-x\right)+\left(\sqrt{x}-1\right)=x\left(\sqrt{x}-1\right)+\sqrt{x}-1=\left(\sqrt{x}-1\right)\left(x+1\right)\\ x+\sqrt{x}-2=x+2\sqrt{x}-\sqrt{x}-2=\sqrt{x}\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)=\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\\ x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}-6=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
Mấy bạn còn lại tương tự những bài trên nhé. Nếu còn thắc mắc ở chỗ nào bạn có thể liên hệ mình nhé. Nhớ lần sau bạn tách ra nha, chứ nhiều câu quá.
Khi phân tích thành nhân tử thì việc để dạng phân số kiểu 1/x là không đúng bạn nhé.
\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) (ĐK: \(x>0\))
\(=\left(\dfrac{1}{\sqrt{x}}-\dfrac{x}{\sqrt{x}}\right)\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{-\sqrt{x}}\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{-\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\left(\sqrt{x}+1\right)^2\)
c:
b;
Sửa đề: \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)
\(A=\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}=x-\sqrt{xy}+y\)
\(B=\dfrac{\sqrt{x}-\sqrt{y}}{x\sqrt{x}-y\sqrt{y}}=\dfrac{1}{x+\sqrt{xy}+y}\)
\(C=\dfrac{3\sqrt{3}+x\sqrt{x}}{3-\sqrt{3x}+x}=\sqrt{x}+\sqrt{3}\)
\(D=\dfrac{x+\sqrt{5x}+5}{x\sqrt{x}-5\sqrt{5}}=\dfrac{1}{\sqrt{x}-\sqrt{5}}\)