K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2022

a: Xét ΔBAH vuông tại H và ΔBMH vuông tại H có

BH chung

HA=HM

Do đó: ΔBAH=ΔBMH

b: Xét ΔIAB và ΔIDC có

góc AIB=góc DIC

IB=IC

góc IBA=góc ICD

Do đó: ΔIAB=ΔIDC

=>AB=CD

c: Xét ΔADM có AH/AM=AI/AD

nên HI//DM

=>DM//BC

26 tháng 11 2015

Tự vẽ hình được ko? Mình ko làm được phần c đâu nhé!

a) Xét \(\Delta AMBvà\Delta CMDcó:\)

AM=MC

góc AMB=góc DMC

BM=MD

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Xét \(\Delta ADMvà\Delta BMCcó:\)

AM=MC

góc AMD=góc DMC

BM=MD

\(\Rightarrow\Delta ADM=\Delta CBM\left(c-g-c\right)\)

\(\Rightarrow\)góc DAM=góc BCM (cặp góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên AD//BC

 

17 tháng 12 2018

a ) ( tg là tam giác nha ) 

Xét tgABC và tgDCB ,có : 

AB = CD ( gt ) 

BC là cạnh chung 

góc B1 = góc C2 ( 2 góc so le trong của AB // CD ) 

Do đó : tgABC = tgDCB ( c - g - c ) 

b ) Ta có : tgABC = tgDCB ( cmt ) 

=> góc C1 = gócB2 ( 2 góc tương ứng ) 

=> AC//BD ( vì gócC1 và gócB2  là 2 góc so le trong của AC và BD )

c ) sai đề rồi 

d ) Ta có : AB // CD ( gt )

          và : AB = CD ( gt ) 

do đó : tứ giác ABCD là hinh bình hành ( có 2 cặp cạnh đối song song và bằng nhau ) ( 1 ) 

mà : I là trung điểm của BC ( 2 ) 

      : AD và BC cũng chính là 2 đường chéo của hình bình hành ABCD ( 3 ) 

Từ ( 1 ) (2 ) và ( 3 ) suy ra : I là trung điểm cùa AD ( vì trong hình bình hành trung điểm của một đường chéo chính là trung điểm của đường chéo còn lại ) 

11 tháng 2 2020

A B C E H F D K M O N

MF _|_ BH (gt) và BH _|_ AC (gt) => FM // AC (đl)

=> góc FMB = góc ACB (đồng vị)

mà góc ACB = góc ABC do tam giác ABC cân tại A (gt)

=> góc FMB = góc ABC 

xét tam giác BDM và tam giác MFB có : BM chung 

góc BDM = góc BFM = 90

=> tam giác BDM = tam giác MFB (ch-gn)

=> BD = FM (đn)       (1)

xét tứ giác FHEM có : góc MFH = góc FHE = góc HEM  = 90

=> FHEM là hình chữ nhật  (dh)

=> FM = HE (tc)    và (1)

=> BD = HE       (2)

kẻ DO // AC 

=> góc BOD = góc ACB  (đồng vị)

góc ACB = góc ABC (cmt)

=> góc DBO = góc DOB  

=> tam giác DOB cân tại D (dh)

=> BD = DO    và (2)

=> DO = HE 

mà HE = CK (gt)

=> DO = CK       (3)

gọi DK cắt BC tại N

xét tam giác DNO và tam giác KNE có : góc DNO = góc KNE (đối đỉnh)

góc ODN = góc NKC do DO // AC (cách vẽ)    và (3)

=> tam giác DNO = tam giác KNE (g-c-g)

=> DN = NK (đn)

mà N nằm giữa D và K 

=> N là trung điểm của DK 

N thuộc BC 

=> BC đi qua trung điểm của DK

6 tháng 1 2020

a) ta có AB=AC

=> TAM GIÁC ABC CÂN TẠI A

=> B=C

XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ

                         AB  =  AC(GT)

                          B   =  C (CMT)

                        BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)

=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)

6 tháng 1 2020

B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)

\(BM=MC\left(GT\right)\)

\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)

\(MA=ME\left(GT\right)\)

\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)

\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AC//BE\)