Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c > 0 CMR:
\(\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)
\(A=\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\)
\(\Leftrightarrow2A=\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ac}+\dfrac{2c^2}{2c^2+ab}\)
\(=1-\dfrac{bc}{2a^2+bc}+1-\dfrac{ac}{2b^2+ac}+1-\dfrac{ab}{2c^2+ab}\)
\(=3-\dfrac{bc}{2a^2+bc}-\dfrac{ac}{2b^2+ac}-\dfrac{ab}{2c^2+ab}\)
CM: \(P=\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)
Thật vậy:
\(P\ge\dfrac{\left(ab+bc+ac\right)^2}{2a^2bc+b^2c^2+2b^2ac+a^2c^2+2c^2ab+a^2b^2}\)
\(=\dfrac{\left(ab+bc+ac\right)^2}{a^2bc+a^2bc+b^2c^2+b^2ac+b^2ac+a^2c^2+c^2ab+c^2ab+a^2b^2}\)
\(=\dfrac{\left(ab+bc+ac\right)^2}{ab\left(ac+bc+ab\right)+bc\left(ab+bc+ac\right)+ac\left(ab+bc+ac\right)}\)
\(=1\)
\(2A=3-P\le3-1=2\)
\(2A\le2\Leftrightarrow A\le1\)
\("="\Leftrightarrow a=b=c\)
\(A=\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\)
\(\Leftrightarrow2A=\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ac}+\dfrac{2c^2}{2c^2+ab}\)
\(=1-\dfrac{bc}{2a^2+bc}+1-\dfrac{ac}{2b^2+ac}+1-\dfrac{ab}{2c^2+ab}\)
\(=3-\dfrac{bc}{2a^2+bc}-\dfrac{ac}{2b^2+ac}-\dfrac{ab}{2c^2+ab}\)
CM: \(P=\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)
Thật vậy:
\(P\ge\dfrac{\left(ab+bc+ac\right)^2}{2a^2bc+b^2c^2+2b^2ac+a^2c^2+2c^2ab+a^2b^2}\)
\(=\dfrac{\left(ab+bc+ac\right)^2}{a^2bc+a^2bc+b^2c^2+b^2ac+b^2ac+a^2c^2+c^2ab+c^2ab+a^2b^2}\)
\(=\dfrac{\left(ab+bc+ac\right)^2}{ab\left(ac+bc+ab\right)+bc\left(ab+bc+ac\right)+ac\left(ab+bc+ac\right)}\)
\(=1\)
\(2A=3-P\le3-1=2\)
\(2A\le2\Leftrightarrow A\le1\)
\("="\Leftrightarrow a=b=c\)