K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2020
https://i.imgur.com/3Xg4fhj.png
5 tháng 3 2020
https://i.imgur.com/qefGgvq.png
25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

20 tháng 11 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Chú ý rằng I, J, K thẳng hàng vì chúng cùng thuộc giao tuyến của hai mặt phẳng (CBD) và (C'B'D')

b) 4. Vì 4 điểm không đồng phẳng sẽ tạo nên 1 tứ diện => có 4 mặt

8 tháng 8 2017

Hih e tự vẽ nha:

a) Vì DM//BE nên tứ giác BDME là hình thang.

Lại có :\(\widehat{B}=\widehat{C}=60\)( tam giác ABC đều)

và \(\widehat{BEM}=\widehat{C}=60\)(Vì DE//AC và ACB=90 độ)

=>\(\widehat{BEM}=\widehat{B}=60\)

=>Tứ giác BDME là htc.

T/tự cho các hình còn lại.

b)Xét tam giác BDM và EMD:

BD=ME( BDME là htc)

góc BDM=góc EMD(Vì DM//BE và góc BEM=góc B=60 độ)

DM là cah chug

=> tg BDM=tg EMD (cgc)

=>BM=DE

C/m t/tự đối vói các tg AFD=AMF; tg CEM=tg FME

=> AM=DF;CM=EF

=>BM+AM+CM=DE+DF+EF= Chu vi của tam giác DEF

c) Ở câu a/ ta đã có góc B= góc E=60 nên suy ra đc các góc còn lại của htc BDME bằng 120 độ

T/tự cho 2 htc còn lại suy ra đc cả 3 góc đều =120 độ nên chúng = nhau

9 tháng 8 2017

M A B C D E F

a, Chứng minh các tứ giác BDME,CFME,ADMF là các hình hang cân.

Ta có : MD//BC\(\Rightarrow\)BDME là hình thang cân .(1)

ME//AC\(\Rightarrow\widehat{MEB}=\widehat{ACB}\)(hai góc đồng vị )

mà \(\widehat{ACB}=\widehat{ABC}=60^o\)(do tam giác ABC đều)

\(\Rightarrow\widehat{MEB}=\widehat{ABC}=60^o\)(2)

Từ (1) và (2) => tứ giác  BDME là hình thang cân.

Chứng minh tương tự ta cũng có : tứ giác CFME và ADMF là các hình thang cân.

b,Chứng minh chu vi của tam giác DEF bằng tổng các khoảng cách từ M đến các đỉnh của tam giác ABC . \(\left(P_{DME}=MB+MA+MC\right)\)

Ta có : \(P_{DEF}=DE+DF+EF\)

Lại có tứ giác BDME là hình thang cân (cmt) => DE = MB.

          tứ giác  CFME là hình thang cân (cmt)=> MC=EF

          tứ giác DMF là hình thang cân (cmt)=> MA =DF.

\(\Rightarrow P_{DEF}=MA+MB+MC\)

=> đpcm.

c,Chứng minh \(\widehat{DME}=\widehat{DMF}=\widehat{EMF}\)

Trong hình thang cân BDME có : \(\widehat{DBE}=60^o\)

mà \(\widehat{DME}+\widehat{DBE}=180^o\Rightarrow\widehat{DME}=180^o-\widehat{DBE}=180^o-60^o=120^o\)

Chứng minh tương tự ta có : \(\widehat{DMF}=120^o;\widehat{EMF}=120^o\)

=>\(\widehat{DME}=\widehat{DMF}=\widehat{EMF}=120^o\)(đpcm)

Mình giải chi tiết rùi đấy nhé nếu có j hk hiểu cứ nhắn tin cho mk mk sẽ giải thích cho nhé.

Nên nhớ hình vẽ chỉ mang tính chất minh họa . Mình vẽ hình cho mấy bạn  nhìn vô cho dể hiểu thôi chứ chưa chuẩn lắm đâu mấy bạn tự vẽ hình cho đẹp nhé ai thấy hay thì k cho mk nhé . CẢM ƠN NHIỀU .

12 tháng 4 2022

Tham khảo 

https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/

12 tháng 4 2022

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°

PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°

Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

ˆBMA=ˆBCP=90°BMA^=BCP^=90° 

ˆPBCPBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)

Hay ˆCPQ=ˆCMACPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)

⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^

Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)

⇒ ˆCPQ=ˆPQNCPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3

  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao...
Đọc tiếp
  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD.                              d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc  với AD.    Giúp mik câu c) và d) với! (các bạn cứ coi như câu a) và b) đã có sẵn trg giả thiết đi, vì mk mới giải đc 2 câu đấy thôi.) Thanks
0

a: góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD

20 tháng 3 2023

a. góc CDM=góc CEM=90 độ

=>CDEM nội tiếp

b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có

góc EMA chung

=>ΔMEA đồng dạng với ΔMDB

=>ME/MD=MA/MB

=>ME*MB=MA*MD