- tìm GTNN của biểu thức : A=x4-x2+2x+2020
- giúp mik nhanh nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này mình chịu thua
hình như gtnn nó ko có vì tùy theo x và ko có số lớn nhất nhỏ nhất
1) Để A có giá trị nhỏ nhất thì 2x^2 phải có giá trị dương nhỏ nhất. Nhận thấy rằng 2x^2 >= 0 với mọi x.
Dấu = xảy ra khi 2x^2 = 0, khi đó x = 0.
Vậy để A đạt GTNN thì x = 0, khi đó A = 2 * 0^2 + 1 = 0 + 1 = 1.
2) Để B có giá trị nhỏ nhất thì 2(x - 1)^2 phải có giá trị dương lớn nhất. Nhận thấy rằng 2(x - 1)^2 >= 0 với mọi x.
Dấu = xảy ra khi 2(x - 1)^2 = 0, khi đó x = 1.
Vậy để B đạt GTNN thì x = 1, khi đó B = 2(1 - 1)^2 + 4 = 0 + 4 = 4.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
\(x^4-2x^2+1+x^2+2x+1+2018=\left(x^2-1\right)^2+\left(x+1\right)^2+2018\ge2018\)
Dấu "=" xayr ra <=> \(\hept{\begin{cases}x^2-1=0\\x+1=0\end{cases}\Leftrightarrow x=-1}\)
Kết luận :...