cho tam giác ABC, AE;AF vuông với tia phân giác của góc trong và ngoài của B; AH,AK vuông với tia phân giác của góc trong và ngoài của C; M,N là giao điểm của FK với AB,AC chứng minh F,H,E,K thẳng hàngg
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔA'B'C' đồng dạng với ΔABC
=>A'B'/AB=B'C'/BC=A'C'/AC=k và góc A'=góc A; góc B=góc B'; góc C'=góc C
=>góc BAE=góc B'A'E'
Xét ΔABE và ΔA'B'E' có
góc B=góc B'
góc BAE=góc B'A'E'
=>ΔABE đồng dạng với ΔA'B'E'
=>AE/A'E'=AB/A'B'
=>A'E'/AE=A'B'/AB=k
Cho tam giác ABC vuông tại A, AB= 30cm, AC= 40cm, đường cao AE, phân giác BD. F là giao điểm của AE và BD.
Cm: tam giác ABC đồng dạng với tam giác EAC. Tính AE
bạn bấm vào dấu ... dưới bài viết, nhấp vào cập nhật rồi chỉnh sửa lại nhé
\(S_{ABM}=\dfrac{1}{3}\times S_{ABE}\) (chung đường cao hạ từ \(B\), \(AM=\dfrac{1}{3}\times AE\))
\(\Leftrightarrow S_{ABE}=3\times S_{ABM}=3\times90=270\left(cm^2\right)\)
\(S_{ABE}=\dfrac{1}{3}\times S_{ABC}\) (chung đường cao hạ từ \(A\), \(BE=\dfrac{1}{3}\times BC\))
\(\Leftrightarrow S_{ABC}=3\times S_{ABE}=3\times270=810\left(cm^2\right)\)
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔEAC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEAC
EA=3*4/5=2,4cm
d: BF là phân giác
=>AF/AB=FE/EB
=>AF/3=FE/1,8
=>AF/5=FE/3
mà AF+FE=2,4
nên AF/5=FE/3=2,4/8=0,3
=>AF=1,5cm
a: ΔABC cân tại A
mà AE là phân giác
nên AE là trung trực của BC
b: O nằm trên trung trực của AB
=>OA=OB
O nằm trên trung trực của BC
=>OB=OC
=>OA=OC
=>O nằm trên trung trực của AC
c: OA=OB=OC
=>O cách đều 3 đỉnh của ΔABC
có AB=AC suy ra tam giác ABC cân
mà AE là phân giác góc BAC suy ra AE là đg cao (tính chất)và cũng suy ra b)AE là đg trung trực của BC
xét 2 tam giác vuông ABE và ACE co
suy ra 2 tam giác bằng nhau
a: Xet ΔABE và ΔACE có
AB=AC
góc BAE=góc CAE
AE chung
=>ΔABE=ΔACE
b: ΔABC cân tại A
mà AE là phân giác
nên AE là trung tuyến
c: ΔABC cân tại A
mà AE là trung tuyến
nên AE vuông góc BC
d: AG=2/3*AE=6cm
tick cho minh roi minh lam cho