K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016
  • GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

  • GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

5 tháng 8 2016
  • GTNN : Áp dụng bđt : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)(Dấu "=" xảy ra khi a = b) được : 

\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\). Dấu "=" xảy ra khi x = y = 1/2

Min A = 1/2 tại x = y = 1/2

  • GTLN : Ở đây , nếu điều kiện bài toán là x>0 , y>0 thì không xác định được Max.

Do vậy , để tìm Max cần phải sửa điều kiện thành : \(\hept{\begin{cases}x\ge0\\y\ge0\\x+y=1\end{cases}}\) (1)

Ta giải như sau : Từ (1) ta suy ra : \(0\le x\le1\)\(0\le y\le1\)

\(\Rightarrow x^2+y^2\le0+1=1\). Dấu "=" xảy ra khi một trong hai số x,y bằng 0

Vậy ....

đáp số 

x,y=0

jhok tốt

28 tháng 11 2019

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo!

20 tháng 12 2019

Nguyễn Linh Ch Thanks cô ạ,e thiếu + 2:(( ko hiểu sao dạo này e hay nhầm ạ:(

\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

Đặt \(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}=16\)

Ta có:

\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}+2\)

Theo BĐT Cô-si ta có:

\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}+2=\frac{289}{16}\)

Dấu "=" xảy ra tại \(a=6\Rightarrow x=y=\frac{1}{2}\)

19 tháng 12 2019

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+2+\frac{1}{x^2y^2}\)

Đặt \(\frac{1}{x^2y^2}=a\)

Ta có:\(a=\frac{1}{x^2y^2}=\frac{1}{\left(xy\right)^2}\ge\frac{1}{\frac{\left(x+y\right)^4}{16}}\ge16\)

Khi đó:

\(P=a+\frac{1}{a}+2=\left(\frac{1}{a}+\frac{a}{256}\right)+\frac{255a}{256}\)

Theo BĐT Cô si ( từ nay bỏ AM-GM,thấy quê quê sao á ) ta có:

\(P\ge2\sqrt{\frac{1}{a}\cdot\frac{a}{256}}+\frac{255\cdot16}{256}=\frac{27}{16}\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)