Tìm x nguyên để A=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)
để A nguyên thì \(x-3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{4;2;5;1;6;0;9;-3\right\}\)
Ta có: A= 2x/ x-3 = 2 + 6/ x-3
Để A nguyên thì 2 + 6/ x-3 ∈ Z
<=> 6/ x-3 ∈ Z
<=> x-3 ∈ Ư (6) = {1;−1;2;−2;3;−3;6;−6}
Ta có bảng:
x-3 | 1 | -1 | 3 | -3 |
x | 4 | 2 | 6 | 0 |
Đk | TM | TM | Tm | Tm |
Vậy với x∈{4;2;5;1;6;0;9;−3} thì A nguyên
a) Để \(f\left(x\right)=3\)
\(\Leftrightarrow\frac{2x+1}{2x+3}=3\)
\(\Leftrightarrow3.\left(2x+3\right)=2x+1\)
\(\Leftrightarrow6x+9=2x+1\)
\(\Leftrightarrow6x-2x=1-9\)
\(\Leftrightarrow4x=-8\)
\(\Leftrightarrow x=-2\)
Để f(x) nguyên
\(\Leftrightarrow2x+1⋮2x+3\)
\(\Leftrightarrow2x+3-2⋮2x+3\)
mà \(2x+3⋮2x+3\)
\(\Rightarrow2⋮2x+3\)
\(\Rightarrow2x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng rồi tìm x nguyên nhé
ĐKXĐ x khac -1\(A=\frac{x^3+2x^2-1}{x^3+2x^2+2x+1}=\frac{x^3+x^2+x^2+x-x-1}{x^3+x^2+x^2+x+x+1}=\frac{x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)}{x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)}=\frac{\left(x+1\right)\left(x^2+x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{x^2+x-1}{x^2+x+1}\)
\(ta.coA=\frac{x^2+x-1}{x^2+x+1}=\frac{x^2+x+1-2}{x^2+x+1}=1-\frac{2}{x^2+x+1}\)
Để A \(\in Z\Leftrightarrow\frac{2}{x^2+x+1}\in Z\Rightarrow x^2+x+1\inƯ\left(2\right)\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\in\left\{\pm1;\pm2\right\}\)
giải ra ta được \(x=0,x=-1\)(t/m)
Bài 1:
(2x-1).(y-2) = 12 = 12.1 = (-12).(-1) = 3.4 = (-3).(-4) = 2.6 = (-2).(-6)
TH1: * 2x-1 = 12 => 2x = 11 => x = 11/2
y - 2 = 1 => y = 3 (trường hợp này loại vì x không là số nguyên)
* 2x-1 = 1 => 2x = 2 => x = 1
y-2 = 12 => y = 14 (TM)
...
rùi bn tự xét típ giống như mk ở trên nha!
Bài 2:
a) Để 3/2x-1 là số nguyên
=> 3 chia hết cho 2x-1
=> 2x-1 thuộc Ư(3)={1;-1;3;-3}
nếu 2x-1 =1 => 2x = 2 => x = 1 (TM)
...
rùi bn tự xét típ nha
câu b,c làm tương tự như câu a nha bn
d) Để x -7/x+2 là số nguyên
=> x -7 chia hết cho x + 2
x + 2 - 9 chia hết cho x +2
mà x +2 chia hết cho x + 2
=> 9 chia hết cho x + 2
=> x + 2 thuộc Ư(9)={1;-1;3;-3;9;-9}
...
e) Để 2x+5/x-3 là số nguyên
=> 2x + 5 chia hết cho x-3
2x - 6 + 11 chia hết cho x -3
2.(x-3) + 11 chia hết cho x -3
mà 2.(x-3) chia hết cho x -3
=> 11 chia hết cho x -3
=> x-3 thuộc Ư(11)={1;-1;11;-11}
...
k mk nha
a/
ĐKXĐ: \(x\ne\left\{-1;0;1\right\}\)
b.
\(A=\dfrac{x\left(x^2+2x+1\right)}{x\left(x^2-1\right)}=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c.
\(A=2\Rightarrow\dfrac{x+1}{x-1}=2\)
\(\Rightarrow x+1=2x-2\)
\(\Rightarrow x=3\) (thỏa mãn)
d.
\(A=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
\(A\) nguyên \(\Leftrightarrow\dfrac{2}{x-1}\) nguyên
\(\Rightarrow x-1=Ư\left(2\right)\)
\(\Rightarrow\left[{}\begin{matrix}x-1=-2\\x-1=-1\\x-1=1\\x-1=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=0\left(ktm\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy \(x=\left\{2;3\right\}\) thì A nguyên
ĐKXĐ: \(x\ne3\)
Với \(x\ne3\), ta có:
\(A=\dfrac{2x-5}{x-3}\) \(=\dfrac{2x-6+1}{x-3}\) \(=2+\dfrac{1}{x-3}\)
Để A nguyên thì \(\dfrac{1}{x-3}\) nguyên
\(\Leftrightarrow1⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Leftrightarrow x=\left\{4;2\right\}\)
Vậy với x ={4; 2} thì A là một số nguyên.
ĐKXĐ: \(x\ne3\)
Để A là một số nguyên thì \(2x-5⋮x-3\)
\(\Leftrightarrow2x-6+1⋮x-3\)
mà \(2x-6⋮x-3\)
nên \(1⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(1\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)(thỏa mãn ĐKXĐ)
Vậy: Để A nguyên thì \(x\in\left\{4;2\right\}\)
(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}
Mai Anh ơi đề bạn là tìm x với điều kiện ra sao phải rõ ràng chứ như vầy ai làm được