chia phân thức
\(\frac{2x^3-2y^3}{3x+3y}\div\frac{x^2-2xy+y^2}{6x+6y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
a)\(ĐKXĐ:x\ne0;-1\)
Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)
đề dài nên T giải câu a thôi bn tự làm tiếp mấy câu khác nhé
2x^2 - 2y^2 - 6x - 6y
= 2(x^2-y^2) - 6(x+ y)
= 2(x-y)(x+y) - 6(x+y)
= (2(x-y)-6) (x+y)
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Điều kiện: \(\hept{\begin{cases}3\left(x+y\right)\ne0\\x^2-2xy+y^2\ne0\\6\left(x+y\right)\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x+y\ne0\\\left(x-y\right)^2\ne0\\x+y\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-y\\x\ne y\end{cases}}}\)
\(\frac{2x^3-2y^3}{3x+3y}:\frac{x^2-2xy+y^2}{6x+6y}\)
\(=\frac{2\left(x^3-y^3\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{2\left(x-y\right)\left(x^2+xy+y^2\right)}{3\left(x+y\right)}.\frac{6\left(x+y\right)}{\left(x-y\right)^2}\)
\(=\frac{4\left(x^2+xy+y^2\right)}{x-y}\)