K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

\(A=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)

\(A=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)

\(A=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)

Đặt \(m=x^2-7x+9\)ta có :

\(A=\left(m-3\right)\left(m+3\right)+10\)

\(A=m^2-3^2+10\)

\(A=m^2+1\)

Thay \(m=x^2-7x+9\)ta có :

\(A=\left(x^2-7x+9\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x^2-7x+9=0\)

20 tháng 8 2020

A(x) = ( x - 1 )( x - 3 )( x - 4 )( x - 6 ) + 10

         = [ ( x - 1 )( x - 6 ) ][ ( x - 3 )( x - 4 ) ] + 10

         = [ x2 - 7x + 6 ][ x2 - 7x + 12 ] + 10

Đặt x2 - 7x + 6 = t

<=> A(x) = t( t + 6 ) + 10

                = t2 + 6t + 10

                = ( t2 + 6t + 9 ) + 1

                = ( t + 3 )2 + 1

\(\left(t+3\right)^2\ge0\forall t\Rightarrow\left(t+3\right)^2+1\ge1\)

Đẳng thức xảy ra <=> t + 3 = 0 

                              <=> x2 - 7x + 6 + 3 = 0

                              <=> x2 - 7x + 9 = 0 (*)

\(\Delta=b^2-4ac=\left(-7\right)^2-4\cdot1\cdot9=49-36=13\)( không còn cách nào khác T^T )

\(\Delta>0\)nên (*) có hai nghiệm phân biệt 

\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+\sqrt{13}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-\sqrt{13}}{2}\end{cases}}\)

Vậy MinA = 1 <=> \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)

Sai chỗ nào bỏ qua chỗ đấy nhé T^T

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

23 tháng 7 2018

1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)

Dấu bằng xảy ra khi: |x| = 0 <=> x = 0

Vậy Amin = -2 khi và chỉ khi x = 0

2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8

Vậy Bmin = 3/4 khi và chỉ khi x = 8

3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)

Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6

25 tháng 7 2018

mai tuấn kiệt ok

23 tháng 5 2018

\(A=x^2-2x+10\)

\(A=\left(x^2-2x+1\right)+9\)

\(A=\left(x-1\right)^2+9\)

Mà  \(\left(x-1\right)^2\ge0\)

\(\Rightarrow A\ge9\)

Dấu "=" xảy ra khi :

\(x-1=0\Leftrightarrow x=1\)

Vậy Min A = 9 khi x = 1

23 tháng 5 2018

\(B=x^2-5x-7\)

\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)

\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)

Mà  \(\left(x-\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow B\ge-\frac{53}{4}\)

Dấu "=" xảy ra khi :

\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)

13 tháng 9 2021

\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)

Dấu \("="\Leftrightarrow x=-5\)

 

 

 

18 tháng 9 2021

cảm ơn nha:3

 

1 tháng 11 2017

bo như ngù