Tìm gtnn của A(x) =(x-1)(x-3)(x-4)(x-6)+ 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A(x) = ( x - 1 )( x - 3 )( x - 4 )( x - 6 ) + 10
= [ ( x - 1 )( x - 6 ) ][ ( x - 3 )( x - 4 ) ] + 10
= [ x2 - 7x + 6 ][ x2 - 7x + 12 ] + 10
Đặt x2 - 7x + 6 = t
<=> A(x) = t( t + 6 ) + 10
= t2 + 6t + 10
= ( t2 + 6t + 9 ) + 1
= ( t + 3 )2 + 1
\(\left(t+3\right)^2\ge0\forall t\Rightarrow\left(t+3\right)^2+1\ge1\)
Đẳng thức xảy ra <=> t + 3 = 0
<=> x2 - 7x + 6 + 3 = 0
<=> x2 - 7x + 9 = 0 (*)
\(\Delta=b^2-4ac=\left(-7\right)^2-4\cdot1\cdot9=49-36=13\)( không còn cách nào khác T^T )
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+\sqrt{13}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-\sqrt{13}}{2}\end{cases}}\)
Vậy MinA = 1 <=> \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)
Sai chỗ nào bỏ qua chỗ đấy nhé T^T
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)
Dấu bằng xảy ra khi: |x| = 0 <=> x = 0
Vậy Amin = -2 khi và chỉ khi x = 0
2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8
Vậy Bmin = 3/4 khi và chỉ khi x = 8
3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)
\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)
Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
\(A=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(A=\left[\left(x-1\right)\left(x-6\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+10\)
\(A=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
Đặt \(m=x^2-7x+9\)ta có :
\(A=\left(m-3\right)\left(m+3\right)+10\)
\(A=m^2-3^2+10\)
\(A=m^2+1\)
Thay \(m=x^2-7x+9\)ta có :
\(A=\left(x^2-7x+9\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2-7x+9=0\)