Cho tam giác ABC (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a)Chứng minh: tam giác MAB = tam giác MDC
b)Kẻ AH vuông góc với BC tại H, kẻ Dk vuông góc với BC tại K
c)Trên các đoạn thẳng AB và CD lần lượt lấy điểm E và F sao cho AE = DF. Chứng minh: 3 điểm E,M,F thẳng hàng
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)