Cho các số dương a,b,c,x,y,z thỏa mãn a+b+c=x+y+z. Chứng minh rằng: ax(a+x)+by(b+y)+cz(c+z)\(\ge\)3(abc+xyz)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)
\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)
\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)
\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)
\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm )
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc
Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
Đầu tiên chứng minh:
\(\left(a^2x+b^2y+c^2z\right)\left(yz+zx+xy\right)\ge xyz\left(a+b+c\right)^2\)
\(=xyz\left(x+z+y\right)^2\ge3xyz\left(xy+yz+zx\right)\)
\(\Rightarrow a^2x+b^2y+c^2z\ge3xyz\)
Tương tự có:
\(x^2a+y^2b+z^2c\ge3abc\)
\(\Rightarrow\) ĐPCM