Cho các điện trở: R1= 1Ω, R2=\(\dfrac{1}{2}\)Ω, R3=\(\dfrac{1}{3}\) Ω,...., R2021= \(\dfrac{1}{2021}\)Ω mắc song song với nhau. Tính điện trở tương đương của đoạn mạch
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a. Cần mắc vào HĐT 220V để sáng bình thường.
b. \(I=P:U=1100:220=5A\)
c. \(A=Pt=1100.2.30=66000\)Wh = 66kWh = 237 600 000J
d. \(R=p\dfrac{l}{S}\Rightarrow l=\dfrac{R.S}{p}=\dfrac{\left(220:5\right).0,45.10^{-6}}{1,10.10^{-6}}=18\left(m\right)\)
Bài 4:
a. \(Q_{toa}=A=I^2Rt=2,4^2\cdot120\cdot25=17280\left(J\right)\)
b. \(Q_{thu}=mc\Delta t=1.4200.75=315000\left(J\right)\)
\(H=\dfrac{Q_{thu}}{Q_{toa}}100\%=\dfrac{17280}{315000}100\%\approx5,5\%\)
Baì 1:
a. \(R=R1+R2=4+6=10\Omega\)
\(I=I1=I2=U:R=18:10=1,8A\left(R1ntR2\right)\)
b. \(R1nt\left(R2\backslash\backslash\mathbb{R}3\right)\)
\(R'=R1+\left(\dfrac{R2.R3}{R2+R3}\right)=4+\left(\dfrac{6.12}{6+12}\right)=8\Omega\)
\(I'=U:R'=18:8=2,25A\)
Bài 2:
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{15.10}{15+10}=6\Omega\)
b. \(U=U1=U2=18V\left(R1\backslash\backslash\mathbb{R}2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}I1=U1:R1=18:15=1,2A\\I2=U2:R2=18:10=1,8A\end{matrix}\right.\)
R12=\(\dfrac{R1.R2}{R1+R2}=\dfrac{20.100}{20+100}=\dfrac{50}{3}\)ôm
Rtđ=\(\dfrac{R12.R3}{R12+R3}=160ôm\)
\(R1//R2\Rightarrow Rtd=\dfrac{R1R2}{R1+R2}=24\Omega\Rightarrow Im=\dfrac{U}{Rtd}=\dfrac{12}{24}=0,5A\)
\(\Rightarrow R2//\left(R1ntR3\right)\Rightarrow Im=\dfrac{U}{\dfrac{R2\left(R1+R3\right)}{R2+R1+R3}}=0,4A\)
Do mắc song song nên:
\(R_{tđ}=\dfrac{1}{\dfrac{1}{R_1}+\dfrac{1}{R_2}}\)\(\Rightarrow1=\dfrac{1}{\dfrac{1}{3}+\dfrac{1}{R_2}}\)
\(\Rightarrow\dfrac{1}{3}+\dfrac{1}{R_2}=1\Rightarrow\dfrac{1}{R_2}=\dfrac{2}{3}\Rightarrow R_2=1,5\left(\Omega\right)\)
\(R=R1+\left(\dfrac{R2.R3}{R2+R3}\right)=10+\left(\dfrac{20.30}{20+30}\right)=22\left(\Omega\right)\)
Điện trở tương đương:
\(R_{tđ}=R_1+\dfrac{R_2\cdot R_3}{R_2+R_3}=10+\dfrac{20\cdot30}{20+30}=22\Omega\)
Đáp án B
Điện trở tương đương của 3 điện trở song song:
Vậy R Đ = 16 / 7
\(R_1ntR_2\)
a) \(R_{tđ}=R_{12}=R_1+R_2=10+15=25\Omega\)
b) \(I_1=I_2=I_m=\dfrac{U}{R_{tđ}}=\dfrac{7,5}{25}=0,3A\)
\(\Rightarrow\left\{{}\begin{matrix}U_1=I_1\cdot R_1=0,3\cdot10=3V\\U_2=7,5-3=4,5V\end{matrix}\right.\)
c) Nếu mắc thêm R3=5Ω thì \(\left(R_1ntR_2\right)//R_3\)
\(R=\dfrac{R_3\cdot R_{12}}{R_3+R_{12}}=\dfrac{5\cdot25}{5+25}=\dfrac{25}{6}\Omega\)
\(I=\dfrac{7,5}{\dfrac{25}{6}}=1,8A\)
\(U_3=U_{12}=U_m=7,5V\)
\(\Rightarrow\) \(I_3=\dfrac{7,5}{5}=1,5A\) \(\Rightarrow I_1=I_2=I_{12}=1,8-1,5=0,3A\)
R1//R2//R3
a,\(\Rightarrow\dfrac{1}{RTt}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}\Rightarrow Rtd=12,5\Omega\)
b,\(\Rightarrow\left\{{}\begin{matrix}I1=\dfrac{37,5}{25}=1,5A\\I2=\dfrac{37,5}{50}=0,75A\\I3=\dfrac{37,5}{50}=0,75A\end{matrix}\right.\)\(\Rightarrow Im=\dfrac{37,5}{Rtd}=3A\)
\(R=\dfrac{R1\cdot R2}{R1+R2}=\dfrac{15\cdot10}{15+10}=6\Omega\)
\(U=U1=U2=18V\)
\(\Rightarrow\left\{{}\begin{matrix}I1=U1:R1=18:15=1,2A\\I2=U2:R2=18:10=1,8A\end{matrix}\right.\)
\(R'=\dfrac{R1\cdot\left(R2+R3\right)}{R1+R2+R3}=\dfrac{15\cdot\left(10+5\right)}{15+10+5}=7,5\Omega\)
\(\Rightarrow I'=U:R'=18:7,5=2,4A\)
a)\(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{15\cdot10}{15+10}=6\Omega\)
b)\(U_1=U_2=U_m=18V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{18}{15}=1,2A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{18}{10}=1,8A\)
c)\(R_1//\left(R_2ntR_3\right)\)
Bạn tự vẽ mạch nhé, mình viết cấu tạo mạch rồi.
\(R_{23}=R_2+R_3=10+5=15\Omega\)
\(R_{tđ}=\dfrac{R_{23}\cdot R_1}{R_{23}+R_1}=\dfrac{15\cdot15}{15+15}=7,5\Omega\)
\(I_m=\dfrac{U_m}{R_{tđ}}=\dfrac{18}{7,5}=2,4A\)
\(\Rightarrow\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+....+\dfrac{1}{R2021}\)
\(\Rightarrow\dfrac{1}{Rtd}=\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2}}+\dfrac{1}{\dfrac{1}{3}}+....+\dfrac{1}{\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{1}{Rtd}=1+2+3+....+2021\)
\(A=1+2+3+....+2021\)
\(A=2021+2020+2019+...+1\)
\(\Rightarrow2A=2022+2022+...+2022\)(co 2021 so 2022)
\(\Rightarrow2A=2022.2021\Rightarrow A=\dfrac{2022.2021}{2}=2043231\)
\(\Rightarrow\dfrac{1}{Rtd}=A\Rightarrow Rtd=4,89.10^{-7}\left(\Omega\right)\)