K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

10 tháng 7 2017

( ab + bc + ca )^2 = a^2b^2 + b^2c^2 +c^2a^2 + 2abc( a + b + c )

                          =a^2b^2 + b^2c^2 + c^2a^2 + 2abc.0 ( vì a + b + c = 0)

                          =a^2b^2 + b^2c^2 + c^2a^2

NV
5 tháng 7 2021

Đề bài sai, phản ví dụ: \(a=3;b=1;c=1\)  thì \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=45>0\)

https://olm.vn/hoi-dap/detail/108617134952.html

Bạn xem ở đây phần phân tích đa thức thành nhân tử nhé, sau đây là phần tiếp theo

 

NV
13 tháng 1 2021

\(VT=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)

\(=\left(a^2-b^2-c^2\right)^2-\left(2bc\right)^2\)

\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)

\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

\(=\left(a-b-c\right)\left(a+b+c\right)\left(a+c-b\right)\left(a+b-c\right)\)

Do a;b;c là độ dài 3 cạnh của tam giác, ta có:

\(\left\{{}\begin{matrix}a-b-c< 0\\a+b+c>0\\a+c-b>0\\a+b-c>0\end{matrix}\right.\) \(\Rightarrow VT< 0\) (đpcm)

14 tháng 1 2021

Mình dùng định lí cos vào có được ko ạ

AH
Akai Haruma
Giáo viên
20 tháng 2 2022

Lời giải:

PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$

$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$

$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$

$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$

Áp dụng định lý cosin:

Nếu $a^2+b^2-c^2-ab=0$

$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$

$\Rightarrow \widehat{C}=60^0$

Nếu $a^2+b^2-c^2+ab=0$

$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$

 

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

10 tháng 5 2017

Cần chứng minh 

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có :

p-a = \(\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\)

p-b=\(\frac{a+c-b}{2}\)

p-c =\(\frac{a+b-c}{2}\)

=> VT = 2 \(\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

Xét BDT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(luon-dung\right)\)

Dấu "=" xảy ra khi x=y=1

Khi đó

 \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\). Dấu "=".........

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\). Dấu "="........

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\). Dấu "="........

Cộng vế với Vế , ta suy ra : 

2\(\left(\frac{1}{b+c-a}+\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\) \(\ge\)2\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi a=b=c 

25 tháng 5 2019

Em thử dùng phép thế Ravi ạ, cách thì em biết rồi,muốn thử test cách này:

Đặt a =x + y; b =y + z; c = z + x (để không cần quan tâm để BĐT tam giác nữa)

Khi đó \(p=x+y+z;p-a=z;p-b=x;p-c=y\)

Ta cần chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)

Ta có \(2VT=\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{z}+\frac{1}{x}\right)\)

\(\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}=2VP\Rightarrow VT\ge VP^{\left(đpcm\right)}\)