K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(\frac{3\text{x}-1}{x-1}-\frac{2\text{x}+5}{x+3}=1-\)\(\frac{4}{x^2+2\text{x}-3}\)                              \(\left(\text{Đ}K\text{X}\text{Đ}:x\ne1;x\ne-3\right)\)

\(\Leftrightarrow\frac{\left(3\text{x}-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2\text{x}+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow\left(3\text{x}-1\right)\left(x+3\right)-\left(2\text{x}+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3\text{x}^2+8\text{x}-3-2\text{x}^2-3\text{x}+5=x^2+2\text{x}-3-4\)

\(\Leftrightarrow3\text{x}^2-2\text{x}^2-x^2+8\text{x}-3\text{x}-2\text{x}=-3-4+3-5\Leftrightarrow3\text{x}=-9\Leftrightarrow x=-3\)(không thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm

1 tháng 4 2019

a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)

1 tháng 4 2019

(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)

\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)

\(-x^3-x^2+9x+9=0\)

\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)

\(\left(x+1\right)\left(9-x^2\right)\)=0

(x+1)(3-x)(3+x)=0

*x+1=0 =>x=-1

*3-x=0=>x=3

*3+x=0=>x=-3

18 tháng 8 2015

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{x^2+2x-3}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1\right)^2-4}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1+2\right)\left(x+1-2\right)}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+3\right)\left(x-1\right)}=1\)

ĐKXĐ: x \(\ne\) 1 và x \(\ne\) - 3

\(\left(3x-1\right)\left(x+3\right)-\left(2x-5\right)\left(x-1\right)+4=\left(x+3\right)\left(x-1\right)\)

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 = x2 - x + 3x - 3

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 - x2 + x - 3x + 3 = 0

13x - 1 = 0

x = \(\frac{1}{13}\)

12 tháng 2 2017

chính là 1/13 

nếu đúng thì

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

4 tháng 4 2020

a) 5 - (x - 6) = 4(3 - 2x)

<=> 5 - x + 6 = 12 - 8x

<=> -x + 8x = 12 - 11

<=> 7x = 1

<=> x = 1/7

Vậy S = {1/7}

b) 2x(x - 3) + 5(x - 3) = 0

<=> (2x + 5)(x - 3) = 0

<=> \(\orbr{\begin{cases}2x+5=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=3\end{cases}}\)

Vậy S = {-5/2; 3}

c)ĐK: x \(\ne\)1; x \(\ne\)2

 \(\frac{3x-5}{x-2}-\frac{2x-5}{x-1}=1\)

<=> \(\frac{\left(3x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(2x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}\)

<=> 3x2 - 8x + 5 - 2x2 + 9x - 10 = x2 - 3x + 2

<=> x2 + x - 5 = x2 - 3x + 2

<=> x+ x  - x2 + 3x = 2 + 5

<=> 4x = 7

<=> x = 7/4 

Vậy S = {7/4}

1 tháng 5 2019

mk chỉ giải đc có bài 1 thui nha bn bucminh

\(\frac{4}{x-2}+\frac{1}{x+3}=0\)

ĐKXĐ: x ≠ 2 và x ≠ -3

QĐKM:

⇔(x+3)4 + (x-2)1 = 0

⇔4x + 12 + x - 2 = 0

⇔4x + x = -12 + 2

⇔5x = -10

⇔x= -2

S={-2}

1 tháng 5 2019

Violympic toán 8

22 tháng 1 2019

tae tae ơi khó quá hổng hiểu j hết trơn

22 tháng 1 2019

mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được 

\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)

\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)

\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)

\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)

Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0 

<=> x + 59 = 0 

<=> x=-59