K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 11 2018

Gọi \(ƯCLN\left(2n+1;2n^2-1\right)=a\) \(\Rightarrow\left\{{}\begin{matrix}2n+1⋮a\\2n^2-1⋮a\end{matrix}\right.\)

\(\Rightarrow n\left(2n+1\right)-\left(2n^2-1\right)⋮a\Rightarrow n+1⋮a\)

\(\Rightarrow a\) cũng là ước chung của \(2n+1\)\(n+1\)

\(\Rightarrow2\left(n+1\right)-\left(2n+1\right)⋮a\Rightarrow1⋮a\Rightarrow a=1\)

Vậy \(2n+1\)\(2n^2+1\) là 2 số nguyên tố cùng nhau

\(\Rightarrow\dfrac{2n+1}{2n^2-1}\) tối giản với mọi STN n

20 tháng 11 2018

gọi d là UCLN của (2n+1.2n^2-1)

\(\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}n.\left(2n+1\right)⋮d\\2n^2-1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}}}\)

\(\hept{\begin{cases}1⋮d\\n⋮d\end{cases}\Rightarrow UCLN\left(1,n\right)=1}\)

Vậy p/s sau tối giãn

p/s: lúc tr lớp 6 đi thi gặp bài này dell làm đc ngồi chửi ông ra đề_bây h mới bt bài này lớp 8

20 tháng 11 2018

Gọi \(ƯC\left(2n+1;2n^2-1\right)=d\left(d\in N\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}n\left(2n+1\right)⋮d\\2n^2-1⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}}\)

\(\Rightarrow\left(2n^2+n\right)-\left(2n^2-1\right)⋮d\)

\(\Rightarrow n+1⋮d\)

Mà \(2n+1⋮d\)

Do đó: \(2\left(n+1\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Ước chung của tử và mẫu là 1 nên \(\frac{2n+1}{2n^2-1}\) là p/s tối giản

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2 2024

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

DD
14 tháng 1 2021

Đặt \(d=\left(2n+1,2n^2-1\right)\).

\(\hept{\begin{cases}2n+1⋮d\\2n^2-1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n^2+n⋮d\\2n^2-1⋮d\end{cases}\Rightarrow}\left[\left(2n^2+n\right)-\left(2n^2-1\right)\right]⋮d\)

\(\Rightarrow\left(n+1\right)⋮d\Rightarrow\left[2\left(n+1\right)-\left(2n+1\right)\right]⋮d\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\left(2n+1,2n^2-1\right)=1\)

Suy ra đpcm. 

NV
6 tháng 8 2021

Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+1\right)\left(2n+1\right)-2\left(2n^2+2n\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản với mọi n nguyên

11 tháng 9 2018