Tìm x,biết:
x/3-x2/4=0
Mình Cám Ơn Trước Nha!
UwU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=17\)
\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=17\)
\(\Rightarrow x^3-25x-x^3-8=17\)
\(\Rightarrow25x=-25\Rightarrow x=-1\)
\(\left(x-3\right)\left(2x+8\right)\ge0\)
Th1: \(\hept{\begin{cases}x-3\ge0\\2x+8\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\ge-4\end{cases}\Rightarrow}x\ge3\)
Th2: \(\hept{\begin{cases}x-3\le0\\2x+8\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\le-4\end{cases}\Rightarrow}x\le-4\)
(x+1)^3-x(x-2)^2+x-1=0
⇔x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
⇔x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0
⇔7x^2=0
⇔x^2=0
⇔x=0
Vậy x=0
b,(x-2)^3-x^2(x-6)=4
⇔x^3-6x^2+12x-8-x^3+6x^2=4
⇔12x-8=4
⇔12x=12
⇔x=1
Vậy x=1
a) (2x−1)2−25=0(2x−1)2−25=0
(2x−1)2=0+25=25(2x−1)2=0+25=25
(2x−1)2=52=(−5)2(2x−1)2=52=(−5)2
⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2
b) 8x3−50x=08x3−50x=0
2x(4x2
a: Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
Ta có: \(x^2-3y^2=-59\)
\(\Leftrightarrow16k^2-3\cdot25k^2=-59\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=4\\y=5k=5\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-4\\y=5k=-5\end{matrix}\right.\)
\(\dfrac{x}{3}-\dfrac{x^2}{4}=0\\ \Leftrightarrow x\left(\dfrac{1}{3}-\dfrac{x}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{x}{4}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(\dfrac{x}{3}-\dfrac{x^2}{4}=0\)
\(\Leftrightarrow\dfrac{4x-3x^2}{12}=0\)
\(\Leftrightarrow-3x^2+4x=0\)
\(\Leftrightarrow-3x\left(x-\dfrac{4}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)