1\(\times\) 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1\dfrac{1}{2}\times1\dfrac{1}{3}\times1\dfrac{1}{4}\times....\times1\dfrac{1}{2020}\times1\dfrac{1}{2021}\\ =\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times\dfrac{6}{5}\times....\times\dfrac{2022}{2021}\\ =\dfrac{3\times4\times5\times6\times.....\times2022}{2\times3\times4\times5\times....\times2021}\\ =\dfrac{2022}{2}=1011\)
A=\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)+...+\(\frac{1}{99.100}\)
⇒A=\(\frac{1}{10}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{12}\)+...+\(\frac{1}{99}\)-\(\frac{1}{100}\)
⇒A=\(\frac{1}{10}\)-\(\frac{1}{100}\)
⇒A=\(\frac{9}{100}\)
Vậy A=\(\frac{9}{100}\)
B=\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+...+\(\frac{1}{97.99}\)
=\(\frac{1}{2}\).\((1-\frac{1}{3})\)+\(\frac{1}{2}.(\frac{1}{3}-\frac{1}{5})\)+...+\(\frac{1}{2}.(\frac{1}{97}-\frac{1}{99})\)
=\(\frac{1}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99})\)
=\(\frac{1}{2}.\frac{98}{99}\)
=\(\frac{49}{99}\)
Vậy B=\(\frac{49}{99}\)
\(\dfrac{1}{2\cdot5}+\dfrac{1}{3\cdot5}+\dfrac{1}{3\cdot7}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{9\cdot19}+\dfrac{1}{10\cdot19}=\dfrac{3+2}{2.3.5}+\dfrac{4+3}{3\cdot4\cdot7}+...+\dfrac{10+9}{9\cdot10\cdot19}=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\)
1: \(=\dfrac{1}{29\cdot30}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{28\cdot29}\right)\)
\(=\dfrac{1}{29\cdot30}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{28}-\dfrac{1}{29}\right)\)
\(=\dfrac{1}{29\cdot30}-\dfrac{28}{29}=\dfrac{1-28\cdot30}{870}=\dfrac{-859}{870}\)
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)
Bài 2:
\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{101}\)
\(\Leftrightarrow A=\dfrac{100}{101}\)
Vậy ...
\(B=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+\dfrac{1}{13.16}\)
\(\Leftrightarrow B=\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}\right)\)
\(\Leftrightarrow B=\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{16}\right)\)
\(\Leftrightarrow B=\dfrac{1}{3}.\dfrac{15}{16}\)
\(\Leftrightarrow B=\dfrac{5}{16}\)
Vậy ...
Bài 1:
B=\(\dfrac{\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}\right)}{\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}\right)}\)
\(=\dfrac{\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)}{\left(1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)}\)
\(=\dfrac{\left(\dfrac{2^4+2^3+2^2+2+1}{2^4}\right)}{\left(2^4-2^3+2^2-2+1\right)}\)
\(=\dfrac{\left(2^3+2\right)\left(2+1\right)+1}{2^4}.\dfrac{2^4}{\left(2^3+2\right)\left(2-1\right)}\)
\(=\dfrac{2\left(2^2+1\right)\left(2+1\right)+1}{2\left(2^2+1\right)\left(2-1\right)+1}\)
\(=\dfrac{2.5.3+1}{2.5.1+1}\)
\(=\dfrac{31}{11}\)
\(=2,\left(81\right)\)
1
1
kb nha