K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2015

đặt a^2010+2009=b

\(\Rightarrow\frac{b+1}{\sqrt{b}}\)

ta có : b+1\(\ge\)2\(\sqrt{b}\)         ( cô - si)

\(\frac{b+1}{\sqrt{b}}\ge2\)

dấu = xảy ra \(\Leftrightarrow b=1\)

\(\Rightarrowđpcm\)
 

8 tháng 11 2014

Lấy vế trái trừ vế phải ta có:

\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\sqrt{2009}-\sqrt{2010}=\)\(\frac{2010}{\sqrt{2009}}+\frac{2009}{\sqrt{2010}}-\frac{2009}{\sqrt{2009}}-\frac{2010}{\sqrt{2010}}\)=\(\frac{1}{\sqrt{2009}}-\frac{1}{\sqrt{2010}}\) (1)

2009<2010 lên biểu thức (1) >0

 

21 tháng 2 2019
  1. TA CÓ A>\(\frac{2010}{2009^2+1+2008}\) +\(\frac{2010}{2009^2+2+2007}\) +...+\(\frac{2010}{2009^2+2009}\)                                                     \(\Rightarrow\)A>2009.\(\frac{2010}{2009^2+2009}\)\(\Rightarrow\)A>\(\frac{2009.2010}{2009.2010}\) \(\Rightarrow\) A>1   (1)                                                                         2.TA CÓ A<\(\frac{2010}{2009^2}\) +\(\frac{2010}{2009^2}\) +...+\(\frac{2010}{2009^2}\)                                                                                               \(\Rightarrow\) A<2009.\(\frac{2010}{2009^2}\) \(\Rightarrow\) A<\(\frac{2010}{2009}\) <2 \(\Rightarrow\) A<2     (2)                                                                                          TỪ (1) VÀ (2) SUY RA 1<A<2 .VẬY A KHÔNG PHẢI SỐ NGUYÊN DƯƠNG    (dpcm)
30 tháng 7 2019

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+........+\frac{1}{2010\sqrt{2009}+2009\sqrt{2010}}=\frac{1}{\sqrt{1}\sqrt{2}\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{\sqrt{2}\sqrt{3}\left(\sqrt{2}+\sqrt{3}\right)}+........+\frac{1}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2009}+\sqrt{2010}\right)}\)

\(=\frac{\left(\sqrt{2010}-\sqrt{2009}\right)\left(\sqrt{2010}+\sqrt{2009}\right)}{\sqrt{2009}\sqrt{2010}\left(\sqrt{2010}+\sqrt{2009}\right)}+.......+\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}=1-\frac{1}{\sqrt{2010}}=1-\frac{\sqrt{2010}}{2010}\)

21 tháng 4 2019

A=\(\frac{a^{2010}+2009+1}{\sqrt{a^{2010}+2009}}\)

=\(\sqrt{a^{2010}+2009}+\frac{1}{\sqrt{a^{2010}+2009}}\)

Áp dụng bdt cosi cho 2 số  ko âm

ta đc: A >= @

dấu = xảy ra khi a^2010+2009=1

                         a^2010=-2008( vô lý)

 => dấu = ko xảy ra

vậy A>2

5 tháng 5 2019

\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)

\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)

\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}\)

5 tháng 5 2019

\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)

\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)

1 tháng 7 2017

Từ  \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2010}\)

\(\Leftrightarrow\)  \(\frac{x+y}{xy}=\frac{1}{2010}\)

\(\Leftrightarrow2010x-xy+2010y-2010^2=-2010^2\)

\(\Leftrightarrow x\left(2010-y\right)+2010\left(y-2010\right)=-2010^2\)

\(\Leftrightarrow\left(x-2010\right)\left(y-2010\right)=2010^2\)

Ta có  \(\left(\sqrt{x-2010}+\sqrt{y-2010}\right)^2\)

\(=\left(x-2010\right)+\left(y-2010\right)+2\sqrt{\left(x-2010\right)\left(y-2010\right)}\)

\(=x+y-2.2010+2\sqrt{2010^2}=x+y\)

Do đó  \(x+y=\left(\sqrt{x-2010}+\sqrt{y-2010}\right)^2\) 

mà x, y > 0 nên  \(\sqrt{x+y}=\sqrt{x-2010}+\sqrt{y-2010}\)

11 tháng 7 2017

thầy ơi bài này làm rồi

11 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Vậy:

\(\frac{a\cdot c}{b\cdot d}=\frac{bk\cdot dk}{b\cdot d}=\frac{k^2\cdot\left[b\cdot d\right]}{b\cdot d}=k^2\)

\(\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{2009\left[bk\right]^2+2010\left[dk\right]^2}{2009b^2+2010d^2}=\frac{2009\cdot b^2k^2+201d^2k^2}{2009b^2+2010d^2}=\frac{k^2\left[2009b^2+2010d^2\right]}{2009b^2+2010d^2}=k^2\)Vậy khi \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)