Tứ giác ABCD có AB = AD, \(\widehat{BAD}=60^o,\widehat{BCD}=120^o\). Chứng minh CA = CB + CD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
KK
30 tháng 8 2021
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Trên tia đối của DC lấy I sao cho DI = CB
Khi đó: \(CB+CD=DI+CD=IC\)
Tứ giác ABCD có: \(\widehat{BAD}+\widehat{BCD}=60^0+120^0=180^0\)
\(\Rightarrow\widehat{ADC}+\widehat{ABC}=180^0\)
Mà \(\widehat{ADC}+\widehat{ADI}=180^0\Rightarrow\widehat{ABC}=\widehat{ADI}\)
\(\Delta BAD:AB=AD,\widehat{BAD}=60^0\Rightarrow\Delta BAD\) đều
\(\Rightarrow\widehat{BAD}=60^0\)
\(\Delta ABC=\Delta ADI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}\widehat{BAC}=\widehat{DAI}\\AC=AI\end{cases}}\)
\(\widehat{CAI}=\widehat{CAD}+\widehat{DAI}=\widehat{CAD}+\widehat{BAC}=\widehat{BAD}=60^0\)
Tam giác ACI đều nên AC = AI = CI
Mà \(CB+CD=IC\Rightarrow CA=CB+CD\)