Cho 2xy>x>0 và 3x^2+2y^2=7xy
Tính A=(3x+y)/(7y-x) + (6x-9y)/(2x+y)
help me!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
\(xy+3x-7y-21\\ =\left(xy+3x\right)-\left(7y+21\right)\\ =x\left(y+3\right)-7\left(y+3\right)\\ =\left(y+3\right)\left(x-7\right)\)
b
\(2xy-15-6x+5y\\ =\left(2xy-6x\right)-\left(15-5y\right)\\ =2x\left(y-3\right)-5\left(3-y\right)\\ =2x\left(y-3\right)+5\left(y-3\right)\\ =\left(y-3\right)\left(2x+5\right)\)
c Đề phải là \(\left(2x^2y+2xy^2-x-y\right)\) mới phân tích được: )
\(=2xy\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(2xy-1\right)\)
d
\(7x^3y-3xyz-21x^2+9z\\ =\left(7x^3y-21x^2\right)-\left(3xyz-9z\right)\\ =7x^2\left(xy-3\right)-3z\left(xy-3\right)\\ =\left(xy-3\right)\left(7x^2-3z\right)\)
e
\(4x^2-2x-y^2-y\\ =\left(2x\right)^2-y^2-\left(2x+y\right)\\ =\left(2x-y\right)\left(2x+y\right)-\left(2x+y\right)\\ =\left(2x+y\right)\left(2x-y-1\right)\)
f
\(9x^2-25y^2-6x+10y\\ =\left(3x\right)^2-\left(5y\right)^2-\left(6x-10y\right)\\ =\left(3x-5y\right)\left(3x+5y\right)-2\left(3x-5y\right)\\ =\left(3x-5y\right)\left(3x+5y-2\right)\)
a: =x(y+3)-7(y+3)
=(y+3)(x-7)
b: \(=2xy-6x+5y-15\)
=2x(y-3)+5(y-3)
=(y-3)(2x+5)
c: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)
d: \(=xy\left(7x^2-3z\right)-3\left(7x^2-3z\right)\)
=(7x^2-3z)(xy-3)
e: =4x^2-y^2-2x-y
=(2x-y)(2x+y)-(2x+y)
=(2x+y)(2x-y-1)
f: =(3x-5y)(3x+5y)-2(3x-5y)
=(3x-5y)(3x+5y-2)
P(x)+Q(x)
=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5
=8xy^2-14y^2-6x^2y-3x-5
=>Chọn A
x2 + 2y2 + 2xy - 6x - 2y + 13 = 0
<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0
<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0
<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0
<=> ( x + y - 3 )2 + ( y + 2 )2 = 0
Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra <=> x = 5 ; y = -2
Thế x = 5 ; y = -2 vào A ta được :
\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
a) 6x2 - 12x
= 6x(x - 2)
b) x2 + 2x + 1 - y2
= (x2 + 2x + 1) - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
c) x + y + z + x2 + xy + xz
= (x + x2) + (y + xy) + (z + xz)
= x(1 + x) + y(1 + x) + z(1 + x)
= (x + y + z)(x + 1)
d) xy + xz + y2 + yz
= (xy + xz) + (y2 + yz)
= x(y + z) + y(y + z)
= (x + y)(x + z)
e) x3 + x2 + x + 1
= (x3 + x2) + (x + 1)
= x2(x + 1) + (x + 1)
= (x2 + 1)(x + 1)
f) xy + y - 2x - 2
= (xy + y) - (2x + 2)
= y(x + 1) - 2(x + 1)
= (y - 2)(x + 1)
g) x3 + 3x - 3x2 - 9
= (x3 - 3x2) + (3x - 9)
= x2(x - 3) + 3(x - 3)
= (x2 + 3)(x - 3)
h) x2 - y2 - 2x - 2y
= (x2 - y2) - (2x + 2y)
= (x + y)(x - y) - 2(x + y)
= (x + y)(x - y - 2)
i) 7x2 - 7xy - 5x = 5y
mk thấy con này sai sai ý
a) \(xy+3x-7y-21\)
\(\Leftrightarrow\left(xy+3x\right)-\left(7y+21\right)\)
\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)\)
\(\Leftrightarrow\left(x-7\right)\left(y+3\right)\)
b) \(2xy-15-6x+5y\)
\(\Leftrightarrow\left(2xy-6x\right)-\left(15-5y\right)\)
\(\Leftrightarrow x\left(2y-6\right)-5\left(3-y\right)\)
\(\Leftrightarrow2x\left(y-3\right)+5\left(y-3\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(y-3\right)\)
\(3x^2+2y^2=7xy\)
\(\Leftrightarrow3x^2-7xy+2y^2=0\)
\(\Leftrightarrow3x^2-6xy-xy+2y^2=0\)
\(\Leftrightarrow3x\left(x-2y\right)-y\left(x-2y\right)=0\)
\(\Leftrightarrow\left(3x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-y=0\\x-2y=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x=y\\x=2y\end{matrix}\right.\)
+) TH1 : \(y=3x\)
\(\Leftrightarrow A=\dfrac{3x+y}{7y-x}+\dfrac{6x-9y}{2x+y}\)
\(=\dfrac{3x+3x}{7.3x-x}+\dfrac{6x-9.3x}{2x+3x}\)
\(=\dfrac{9x}{20x}+\dfrac{-21x}{5x}\)
\(=-\dfrac{15}{4}\)
+) TH2 : \(x=2y\)
\(\Leftrightarrow A=\dfrac{3x+y}{7y-x}+\dfrac{6x-9y}{2x+y}\)
\(=\dfrac{3.2y+y}{7y-2y}+\dfrac{6.2y-9y}{2.2y+y}\)
\(=\dfrac{7y}{5y}+\dfrac{3y}{5y}\)
\(=2\)
Vậy...
Đùa chứ đi thi ko đọc kĩ đề 0đ chúc mừng bé