Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng : x^5-x+2 không là số chính phương với mọi x thuộc Z+
Các bạn giúp mk nha !!! 😘😍😍😍
Ta xét \(x^5-x\)
\(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(\Rightarrow\)Biểu thức trên chia hết cho 3 do có 3 số nguyên liên tiếp \(\left(x-1\right)x\left(x+1\right)\)
Hay \(x^5-5⋮3...\) xét \(x^5-x+2\) ta có:
Do \(x^5-x⋮3\Rightarrow x^5-x+2\)chia 3 dư 2.
Ta xét lần lượt các số k có dạng 3k; 3k + 1; 3k + 2 thì ta thấy rằng cả 3 trường hợp khi bình phương lên thì đều chia hết cho 3 hoặc chia 3 dư 1.
=> Không có số chính phương nào chia 3 dư 2.
\(\Rightarrow x^5-x+2\) không là số chính phương.
Ta xét \(x^5-x\)
\(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(\Rightarrow\)Biểu thức trên chia hết cho 3 do có 3 số nguyên liên tiếp \(\left(x-1\right)x\left(x+1\right)\)
Hay \(x^5-5⋮3...\) xét \(x^5-x+2\) ta có:
Do \(x^5-x⋮3\Rightarrow x^5-x+2\)chia 3 dư 2.
Ta xét lần lượt các số k có dạng 3k; 3k + 1; 3k + 2 thì ta thấy rằng cả 3 trường hợp khi bình phương lên thì đều chia hết cho 3 hoặc chia 3 dư 1.
=> Không có số chính phương nào chia 3 dư 2.
\(\Rightarrow x^5-x+2\) không là số chính phương.