Cho 2 điện trở R1=8 và R2 mắc song song vào hiệu điện thế 12V, cường độ dòng điện chạy qua mạch là 3A, tìm điện trở qua mạch và điện trở R2?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điện trở tương đương của đoạn mạch:
\(R_{tđ}=\dfrac{R_1.R_2}{R_1+R_2}=\dfrac{12.24}{12+24}=8\left(\Omega\right)\)
Do mắc song song nên \(U=U_1=U_2=12V\)
Cường độ dòng điện chạy qua mỗi điện trở và qua mạch chính:
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{12}{8}=1,5\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{12}{12}=1\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{12}{24}=0,5\left(A\right)\end{matrix}\right.\)
Khi R1 mắc nối tiếp với R2 thì: ↔ R1 + R2 = 40Ω (1)
Khi R1 mắc song song với R2 thì:
Thay (1) vào (2) ta được R1.R2 = 300
Ta có: R2 = 40 – R1 → R1.(40 – R1) = 300 ↔ - R12 + 40R1 – 300 = 0 (*)
Giải (*) ta được: R1 = 30Ω; R2 = 10Ω hoặc R1 = 10Ω; R2 = 30Ω.
R 1 + R 2 = U / I = 40 ( R 1 . R 2 ) / ( R 1 + R 2 ) = U / I ’ = 7 , 5
Giải hệ pt theo R 1 ; R 2 ta được R 1 = 30 ; R 2 = 10
Hoặc R 1 = 10 ; R 2 = 30
a,có \(R1//R2//R3\)
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{20}\)
\(=>Rtd=5\left(om\right)\)
\(b,=>Im=\dfrac{U}{Rtd}=\dfrac{12}{5}=2,4A\)
\(=>U=U123=U1=U2=U3=12V\)
\(=>\left\{{}\begin{matrix}I1=\dfrac{U1}{R1}=\dfrac{12}{10}=1,2A\\I2=\dfrac{U2}{R2}=\dfrac{12}{20}=0,6A\\I3=\dfrac{U3}{R3}=\dfrac{12}{20}=0,6A\end{matrix}\right.\)
Cường độ dòng điện chạy qua mạch chính là:
Vì R 1 , R 2 , R 3 mắc song song với nhau nên U 1 = U 2 = U 3 = U
Cường độ dòng điện chạy qua từng mạch rẽ là:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}=\dfrac{3}{10}\Omega\)
\(\Rightarrow R_{tđ}=\dfrac{10}{3}\Omega\)
\(U_1=U_2=U_3=U=12V\)
\(I=\dfrac{U}{R}=\dfrac{12}{\dfrac{10}{3}}=3,6A\)
\(I_1=I_2=I_3=\dfrac{U_1}{R_1}=\dfrac{12}{10}=1,2A\)
Nếu mắc nối tiếp:
\(R_{tđ}=R_1+R_2+R_3=10+10+10=30\Omega\)
Ta có: \(I=I_1+I_2\Leftrightarrow I_1=I-I_2=1,2-0,5=0,7\left(A\right)\)