CMR
CĂN BẬC HAI CỦA 2 LÀ SỐ VÔ TỈ
CĂN BẬC 2 CỦA 5 LÀ SỐ VÔ TỈ
CĂN BẬC HAI CỦA 2-7 LÀ SỐ VÔ TỈ
CĂN BẬC HAI CỦA 5-7 LÀ SỐ VÔ TỈ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
Từ mâu thuẫn trên suy ra: thừa nhận là một số hữu tỉ là sai và phải kết luận là số vô tỉ.
Cách chứng minh trên có thể được tổng quát hóa để chứng rằng: "căn bậc hai của một số tự nhiên bất kì hoặc là một số nguyên hoặc là một số vô tỉ."
tích mik nha
Lời giải:
Giả sử $\sqrt{7}\in\mathbb{Q}$. Đặt $\sqrt{7}=\frac{a}{b}$ với $a,b$ nguyên, $b\neq 0$, $(a,b)=1$.
Ta có:
$7=\frac{a^2}{b^2}$
$\Rightarrow a^2=7b^2\vdots 7\Rightarow a\vdots 7\Rightarrow a^2\vdots 49$
$\Rightarrow 7b^2=a^2\vdots 49\Rightarrow b^2\vdots 7$
$\Rightarrow b\vdots 7$
Vậy $7=ƯC(a,b)$ (trái với điều kiện $(a,b)=1$)
Do đó điều giả sử là sai. Tức là $\sqrt{7}$ là số vô tỉ.