Cho A = 4^0 + 4^1 + 4^2 + 4^3 + ... + 4^35.
Hãy so sánh 3A với 64^12
Giúp mjk vs mjk đang cần gấp !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 40 + 41 + 42 + 43 + ... + 435
A = 1 + 4 + 42 + 43 + ... + 435
4A = 4.(1 + 4 + 42 + 43 + ... + 435)
4A = 4 + 42 + 43 + 44 + ... + 436
4A - A = (4 + 42 + 43 + 44 + ... + 436) - (1 + 4 + 42 + 43 + ... + 435)
3A = 1 + 436
Ta có : 6412 = (43)12 = 436
Ta thấy : 1 + 436 > 436 => 3A > 6412
Ta có: S=4^0+4^1+...+4^{35}S=40+41+...+435
\Rightarrow4S=4+4^1+...+4^{36}⇒4S=4+41+...+436
\Rightarrow4S-S=\left(4+4^1+...+4^{36}\right)-\left(4^0+4^1+...+4^{35}\right)⇒4S−S=(4+41+...+436)−(40+41+...+435)
\Rightarrow3S=4^{36}-4^0⇒3S=436−40
\Rightarrow3S=\left(4^3\right)^{12}-1⇒3S=(43)12−1
\Rightarrow3S=64^{12}-1⇒3S=6412−1
Vì 64^{12}-1< 64^{12}6412−1<6412 nên 3S< 64^{12}3S<6412
Vậy 3S< 64^{12}3S<6412
4S=4.(40+41+43+...+435)
4S=41+42+...+436
4S-S=(41-41)+(42-42)+...+(335-335)+336-30
3S=0+0+...+0+336-1
6412=(34)12=336
vỉ 336-1<336 nên 3S<6412
\(S=4^0+4^1+4^2+4^3+...+4^{35}\)
\(4S=4^1+4^2+4^3+...+4^{36}\)
\(4S-S=(4^1+4^2+4^3+...+4^{36})-(4^0+4^1+4^2+4^3+...+4^{35})\)
\(3S=4^{36}-4^0\)
\(S=4^{36}-1\)
\(\text{Ta thấy :}64^{12}=(4^3)^{12}=4^{36}\)
\(\text{Mà }4^{36}-1>4^{36}\text{ nên }3S>A\)
Ta có: \(A=4^0+4^1+4^2+...+4^{20}\)
Nhân A với 4 ta có:
\(4A=4\left(4^0+4^1+4^2+...+4^{20}\right)\)
=> \(4A-A=\left(4^1+4^2+4^3+...+4^{21}\right)-\left(4^0+4^1+4^2+...+4^{20}\right)\)
=> \(A\left(4-1\right)=4^{21}-4^0\)
=> \(3A=4^{21}-1\)
=> \(3A+1=4^{21}=\left(4^3\right)^7=64^7>63^7\)
Vậy 3A + 1 > 63^7.
Lời giải:
$A=1+4+4^2+4^3+....+4^{23}$
$4A=4+4^2+4^3+4^4+...+4^{24}$
$\Rightarrow 4A-A=4^{24}-1$
$\Rightarrow 3A+1=4^{24}=(4^3)^8=64^8> 63^7$
a) \(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\Rightarrow A^2=12-3\sqrt{7}+12+3\sqrt{7}-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}\Rightarrow A^2=24-2\sqrt{144-63}\Rightarrow A^2=24-18\Rightarrow A^2=6\Rightarrow A=\pm\sqrt{6}\)Ta có \(12-3\sqrt{7}< 12+3\sqrt{7}\Rightarrow\sqrt{12-3\sqrt{7}}< \sqrt{12+3\sqrt{7}}\Rightarrow\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}< 0\Rightarrow A< 0\)Vậy A=-6
b) \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\Rightarrow B^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\Rightarrow B^2=8+2\sqrt{16-10-2\sqrt{5}}\Rightarrow B^2=8+2\sqrt{5-2\sqrt{5}+1}\Rightarrow B^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\Rightarrow B^2=8+2\sqrt{5}-2\Rightarrow B=\pm\sqrt{5+2\sqrt{5}+1}\Rightarrow B=\pm\left(\sqrt{5}+1\right)\)Ta có B>0⇒B=\(\sqrt{5}+1\)
c) \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\Rightarrow C^2=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\Rightarrow C^2=6+2\sqrt{9-5}\Rightarrow C^2=6+4=10\Rightarrow C=\pm\sqrt{10}\)Ta có C>0⇒C=\(\sqrt{10}\)
Ta co:S=4^0+4^1+4^2+...+4^35
=>4S=4^1+4^2+...+4^36
=>4S-S=(4^1+4^2+...+4^36)-(4^0+4^1+...+4^35)
hay 3S=4^36-1
3S=64^12-1<64^12
Vay 3S<64^12
co gi hoi mik de mik lam tiep nhe
bye...
143581=3249
Là sao bạn "con lợn hâm" ? Mjk ko hiểu :((