chọn 5 người bất kỳ . chứng minh rằng có út nhất 2 người có cùng số người quen trong 5 người đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì quan hệ quen biết có tính chất 2 chiều: Nếu a quen b thì b quen a
Ta chia n người đã cho vào n nhóm:
+Nhóm 0: Gồm những người có số người quen là 0 ( ko quen ai trong số n-1 người còn lại)
+Nhóm 1: Gồm những người có số người quen là 1
+Nhóm 2: Gồm những người có số người quen là 2
.....................
+Nhóm n-1: gồm những người có số người quen là n-1 ( quen cả n-1 người còn lại)
Ta thấy nhóm 0 và nhóm n-1 ko đồng thời xảy ra vì nếu cóa người quen cả n-1 người còn lại thì ko thể có người nào ko quen ai trong n-1 người còn lại
Như vậy có n người (n\(\geq\)2) mà chỉ có nhiều nhất n-1 nhóm đó là: Nhóm 0;1;2;...;n-2 hoặc nhóm 1;2;3;...;n-1. Nên phải tồn tại ít nhất 2 người cùng 1 nhóm
Tức là tồn tại ít nhất 2 người có số người quen như nhau. (ĐPCM)
k and kb nha!!!!!
Xét A là 1 người bất kỳ trong phòng
\(\Rightarrow\)A quen ít nhất người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là
Trong phòng còn lại người. \(\Rightarrow\)gọi là 1 người quen \(\Rightarrow\) có nhiều nhất người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là \(\Rightarrow\)gọi là 1 người quen và \(\Rightarrow\) không quen nhiều nhất người trong phòng
\(\Rightarrow\)trong phòng còn lại 4 người \(\Rightarrow\)ngoài A,B,C còn 1 người giả sử là D,khi đó A,B,C,D đôi 1 quen nhau(đpcm)
Do có 6 người bất kỳ nên ta đặt tên 6 người đó là A; B; C; D; E; F ứng với 6 điểm A; B; C; D; E; F như hình vẽ:
Nếu hai người quen nhau thì ta nối họ bới một đoạn thẳng màu đỏ.
Nếu hai người không quen nhau thì ta nối họ bởi một đoạn thẳng mầu đen.
Dễ thấy từ A có 5 đoạn thẳng AB; AC; AD; AE; AF. Mỗi đoạn thẳng này được vẽ bằng một trong hai màu đen và đỏ tất nhiên phải có 3 đoạn cùng được vẽ bằng một màu.
Không mất tính tổng quát, ta giả sử có 3 đoạn: AB; AD; và AE cùng được vẽ bằng một màu đỏ ( Xem hình vẽ).
Xét tam giác EBD có ba cạnh EB; BD; DE. Nếu cả ba cạnh này cùng được vẽ bằng một màu đen thì Người E, người B và người D không quen biết nhau ( ĐPCM). Nếu ba cạnh của tam giác EBD không cùng mầu thì sẽ có ít nhất một cạnh màu đỏ (Vì mỗi cạnh được vẽ bằng một trong hai màu đỏ hoặc đen). Không mất tính tổng quát, ta giả sử cạnh BD màu đỏ. Khi đó tam giác ABD có 3 cạnh màu đỏ nghĩa là Người A, người B và người D quen nhau ( Điều phải chứng minh).
Nếu 3 đoạn: AB; AD; và AE cùng được vẽ bằng một màu đen ta vẫn xét tam giácEBD có ba cạnh EB; BD; DE. Nếu cả ba cạnh của tam giác EBD cùng mầu đỏ thi 3 người E; B; D quen nhau. Nếu 3 cạnh của tam giác EBD không cùng mầu thì sẽ có ít nhất một cạnh màu đen (Vì mỗi cạnh được vẽ bằng một trong hai màu đỏ hoặc đen). Không mất tính tổng quát, ta giả sử cạnh BD màu đen. Khi đó tam giác ABD có 3 cạnh màu đen nghĩa là Người A, người B và người D không hề quen biết nhau ( Điều phải chúng minh).
Có 5 người nên số người quen nhiều nhất của mỗi người là 4.
Phòng 0: Chứa những người không có người quen.
Phòng 1: Chứa những người có 1 người quen.
………………………………………………………
Phòng 4: Chứa những người có 4 người quen.
Để ý rằng phòng 0 & phòng 4 không thể cùng có người.
Thực chất 5 người chứa trong 4 phòng.
Theo nguyên lý Dirichlet tồn tại một phòng chứa ít nhất 2 người. Từ đó có điều phải chứng minh.
Mỗi người trong số 5 người có khả năng về một số người quen ( từ 0 đến 4 ) . Ta xét 2 trường hợp sau :
( 1 ) nếu có 1 người ko quen ai trong số 4 người còn lại thì rõ ràng ko có ai quen cả 4 người . Như vậy , 5 người mà chỉ có 4 khả năng về số người quen ( 0 đến 3 ) nên theo nguyên lý Dirichlet có ít nhất hai người có cùng số người quen
( 2 ) nếu mỗi người đều có ít nhất một người quen . Khi đó , 5 người mà chỉ có 4 khả năng về số người quen ( từ 1 đến 4 ) , theo nguyên lý Dirichlet có ít nhất 2 người có cùng số người quen
có thể có ít nhất 2 người ko có cùng số người quen nhưng khi bạn gặp họ thì tất cả đều quen bạn còn nếu bạn ko gặp thì mk chịu chỉ có cùng quen những người có tầm nổi tiếng xuất chúng thôi
-viết thế ko biết bạn có hiểu ko nữa-