tính \((\dfrac{3^{2}.3^{4}}{{6^{5}.9}})^{4}\): \((\dfrac{2^{4}}{64})^{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(1+\dfrac{4}{9}=\dfrac{9}{9}+\dfrac{4}{9}=\dfrac{9+4}{9}=\dfrac{13}{9}\)
b) \(5+\dfrac{1}{2}=\dfrac{10}{2}+\dfrac{1}{2}=\dfrac{10+1}{2}=\dfrac{11}{2}\)
c) \(3-\dfrac{5}{6}=\dfrac{18}{6}-\dfrac{5}{6}=\dfrac{18-5}{6}=\dfrac{13}{6}\)
d) \(\dfrac{31}{7}-2=\dfrac{31}{7}-\dfrac{14}{7}=\dfrac{31-14}{7}=\dfrac{17}{7}\)
\(a,=\dfrac{3}{2}-\dfrac{5}{6}:\dfrac{1}{4}+\sqrt{\dfrac{1}{4}-\dfrac{1}{2}}=\dfrac{3}{2}-\dfrac{10}{3}+\sqrt{\dfrac{1}{2}}=-\dfrac{11}{6}+\dfrac{\sqrt{2}}{2}=\dfrac{-33+3\sqrt{2}}{6}\)
\(b,=-\dfrac{4}{3}\cdot\dfrac{9}{2}+\dfrac{13}{12}\cdot\left(-\dfrac{8}{13}\right)=6-\dfrac{2}{3}=\dfrac{16}{3}\\ c,=\dfrac{1}{4}-\left(-\dfrac{1}{6}:4-8\cdot\dfrac{1}{16}\right)=\dfrac{1}{4}-\left(-\dfrac{1}{24}-\dfrac{1}{2}\right)\\ =\dfrac{1}{4}-\dfrac{13}{24}=-\dfrac{7}{24}\\ d,=\dfrac{3^{11}\cdot5^{11}\cdot5^7\cdot3^4}{5^{18}\cdot3^{18}}=\dfrac{1}{3^3}=\dfrac{1}{27}\)
\(\dfrac{2}{5}+\dfrac{1}{5}=\dfrac{2+1}{5}=\dfrac{3}{5}\)
\(\dfrac{2}{3}+\dfrac{5}{3}=\dfrac{2+5}{3}=\dfrac{7}{3}\)
\(\dfrac{3}{8}+\dfrac{4}{8}=\dfrac{3+4}{8}=\dfrac{7}{8}\)
\(\dfrac{6}{9}+\dfrac{2}{9}=\dfrac{6+2}{9}=\dfrac{8}{9}\)
\(\dfrac{12}{18}+\dfrac{7}{18}=\dfrac{12+7}{18}=\dfrac{19}{18}\)
\(\dfrac{7}{4}+\dfrac{2}{4}=\dfrac{7+2}{4}=\dfrac{9}{4}\)
\(\dfrac{1}{2}-\dfrac{3}{8}=\dfrac{4}{2\times4}-\dfrac{3}{8}=\dfrac{4}{8}-\dfrac{3}{8}=\dfrac{1}{8}\)
\(\dfrac{4}{3}-\dfrac{8}{15}=\dfrac{4\times5}{3\times5}-\dfrac{8}{15}=\dfrac{20}{15}-\dfrac{8}{15}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\dfrac{5}{6}-\dfrac{7}{12}=\dfrac{5\times2}{6\times2}-\dfrac{7}{12}=\dfrac{10}{12}-\dfrac{7}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)
\(\dfrac{11}{4}-\dfrac{9}{8}=\dfrac{11\times2}{4\times2}-\dfrac{9}{8}=\dfrac{22}{8}-\dfrac{9}{8}=\dfrac{13}{8}\)
\(\dfrac{17}{16}-\dfrac{3}{4}=\dfrac{17}{16}-\dfrac{3\times4}{4\times4}=\dfrac{17}{16}-\dfrac{12}{16}=\dfrac{5}{16}\)
\(\dfrac{31}{36}-\dfrac{5}{6}=\dfrac{31}{36}-\dfrac{5\times6}{6\times6}=\dfrac{31}{36}-\dfrac{30}{36}=\dfrac{1}{36}\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
1: Ta có: \(\dfrac{x+4}{4}+\dfrac{3x-7}{5}=\dfrac{7x+2}{20}\)
\(\Leftrightarrow5x+20+12x-28=7x+2\)
\(\Leftrightarrow17x-7x=2+8=10\)
hay x=1
2: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow\dfrac{6x}{36}+\dfrac{4\left(1-3x\right)}{36}=\dfrac{3\left(-x+1\right)}{36}\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-6x+3x=3-4\)
hay \(x=\dfrac{1}{3}\)
3: Ta có: \(\dfrac{x-3}{3}-\dfrac{x+2}{12}=\dfrac{2x-1}{4}\)
\(\Leftrightarrow4x-12-x-2=6x-3\)
\(\Leftrightarrow3x-14-6x+3=0\)
\(\Leftrightarrow-3x=11\)
hay \(x=-\dfrac{11}{3}\)
4: Ta có: \(\dfrac{x-2}{4}-\dfrac{2x+3}{3}=\dfrac{x+6}{12}\)
\(\Leftrightarrow3x-6-8x-12=x+6\)
\(\Leftrightarrow-5x-x=6+18\)
hay x=-4
5: Ta có: \(\dfrac{2x-1}{12}-\dfrac{3-x}{18}=\dfrac{-1}{36}\)
\(\Leftrightarrow6x-3+2x-6=-1\)
\(\Leftrightarrow8x=8\)
hay x=1
a: \(=\dfrac{-3}{4}\left(31+\dfrac{11}{23}+8+\dfrac{12}{23}\right)=\dfrac{-3}{4}\cdot40=-30\)
b: \(=\left(\dfrac{7}{3}+\dfrac{7}{2}\right):\left(-\dfrac{25}{6}+\dfrac{22}{7}\right)+\dfrac{15}{2}\)
\(=\dfrac{35}{6}:\dfrac{-175+132}{42}+\dfrac{15}{2}\)
\(=\dfrac{35}{6}\cdot\dfrac{42}{-43}+\dfrac{15}{2}\)
\(=\dfrac{35\cdot7}{-43}+\dfrac{15}{2}\)
\(=\dfrac{-70\cdot7+15\cdot43}{86}=\dfrac{155}{86}\)
c: \(=\dfrac{-7}{5}\left(4+\dfrac{5}{9}+5+\dfrac{4}{9}\right)=\dfrac{-7}{5}\cdot10=-14\)
d: \(=4+\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}\cdot\dfrac{64}{125}\cdot\dfrac{-8}{27}\right)\)
\(=\dfrac{89}{16}+25\cdot\dfrac{-32}{375}\)
\(=\dfrac{89}{16}-\dfrac{32}{15}=\dfrac{823}{240}\)
e: \(=\dfrac{2}{3}-4\cdot\left(\dfrac{2}{4}+\dfrac{3}{4}\right)=\dfrac{2}{3}-5=-\dfrac{13}{3}\)
\(\left(\dfrac{3^2.3^4}{6^5.9}\right)^4:\left(\dfrac{2^4}{64}\right)^{12}\)
=\(\left(\dfrac{3^4}{6^5}\right)^4:\left(\dfrac{16}{64}\right)^{12}\)
=\(\left(\dfrac{1}{96}\right)^4:\left(\dfrac{1}{4}\right)^{12}\)
=\(\dfrac{1}{96^4}:\dfrac{1}{4^{12}}\)
=\(\dfrac{4^{12}}{96^4}\)