K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

con gà

11 tháng 11 2018

gà con 

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

Xét PT(1)

\(2x^2+y^2-3xy+3x-2y+1=0\)

\(\Leftrightarrow 2x^2-3x(y-1)+(y-1)^2=0\)

Đặt \(y-1=t\Rightarrow 2x^2-3xt+t^2=0\)

\(\Leftrightarrow (x-t)(2x-t)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-t=0\\2x-t=0\end{matrix}\right.\)

TH1: \(x-t=0\Leftrightarrow x=t=y-1\)

Thay vào PT(2)

\(\Rightarrow 4(y-1)^2-y^2+(y-1)+4=\sqrt{3y-2}+\sqrt{5y-1}\)

\(3y^2-7y+7=\sqrt{3y-2}+\sqrt{5y-1}\)

\(\Leftrightarrow 3(y^2-3y+2)=\sqrt{3y-2}-y+\sqrt{5y-1}-(y+1)\)

\(\Leftrightarrow 3(y^2-3y+2)=\frac{3y-2-y^2}{\sqrt{3y-2}+y}+\frac{3y-2-y^2}{\sqrt{5y-1}+y+1}\)

\(\Leftrightarrow (y^2-3y+2)\left[3+\frac{1}{\sqrt{3y-2}+y}+\frac{1}{\sqrt{5y-1}+y+1}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn lớn hơn 0. Do đó \(y^2-3y+2=0\Leftrightarrow y=1\) hoặc \(y=2\)

Kéo theo \(x=0\) hoặc x=1

TH2: \(2x=t=y-1\)

\(\Leftrightarrow y=2x+1\). Thay vào PT(2)

\(4x^2-(2x+1)^2+x+4=\sqrt{4x+1}+\sqrt{9x+4}\)

\(3-3x=\sqrt{4x+1}+\sqrt{9x+4}\)

\(\Leftrightarrow \sqrt{4x+1}-1+\sqrt{9x+4}-2+3x=0\)

\(\Leftrightarrow \frac{4x}{\sqrt{4x+1}+1}+\frac{9x}{\sqrt{9x+4}+2}+3x=0\)

\(\Leftrightarrow x\left(\frac{4}{\sqrt{4x+1}+1}+\frac{9}{\sqrt{9x+4}+2}+3\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0. Do đó x=0 kéo theo \(y=1\)

Vậy \((x,y)\in\left\{(0;1);(1;2)\right\}\)

29 tháng 4 2023

\(\left\{{}\begin{matrix}2\left(xy+1\right)=x\left(x+y\right)+2\left(1\right)\\3xy-x+3=\sqrt{x+2y+1}+\sqrt{x+4y+4}\left(2\right)\end{matrix}\right.\)

Đk: \(x+2y+1\ge0,x+4y+4\ge0\)

\(\left(1\right)\Rightarrow2xy+2=x^2+xy+2\)

\(\Leftrightarrow x^2-xy=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=y\end{matrix}\right.\) 

*Khi \(x=0\), thay vào (2) ta được pt: \(\sqrt{2y+1}+\sqrt{4y+4}=3\)

Giải bằng phương pháp bình phương 2 vế ta được \(y=0\).

Thay \(x=y=0\) vào đk hoàn toàn thỏa mãn.

*Khi \(x=y\), thay vào (2) ta được pt: \(3x^2-x+3=\sqrt{3x+1}+\sqrt{5x+4}\) .

Mình không giải được nhưng pt có nghiệm \(x=0\) nên suy ra \(y=0\)Vậy hệ pt ban đầu có nghiệm \(\left(x,y\right)=\left(0;0\right)\).

 

a: \(=\dfrac{\left|x+2\right|}{x-1}\)

b: \(=x-2y-\left|x-2y\right|\)\(=\left[{}\begin{matrix}x-2y-x+2y=0\\x-2y+x-2y=2x-4y\end{matrix}\right.\)

c: \(=\dfrac{\left|x+2\right|}{\left(x+2\right)\left(x-2\right)}=\pm\dfrac{1}{x-2}\)