Cho hs y=x2 (P)và B(3;0),tìm pt thoả mãn đk tiếp xúc vs (P) và đi qua B
Giúp mk bài này vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để lập Bảng Bảng Tiến trình (BBT) và vẽ đồ thị cho từng hàm số, ta tiến hành theo các bước sau:
a. y = x^2 - 4x + 3
Đầu tiên, ta lập BBT bằng cách tạo một bảng với các cột cho giá trị của x, giá trị của hàm số y tương ứng và sau đó tính giá trị của y bằng cách thay các giá trị của x vào công thức của hàm số.
x | y-2 | 15 -1 | 8 0 | 3 1 | 0 2 | -1 3 | 0 4 | 3 5 | 8
Sau khi lập BBT, ta có thể vẽ đồ thị bằng cách vẽ các điểm (x, y) tương ứng trên hệ trục tọa độ.
b. y = -x^2 + 2x - 3
Lập BBT:
x | y-2 | -11 -1 | -6 0 | -3 1 | -2 2 | -3 3 | -6 4 | -11
Vẽ đồ thị.
c. y = x^2 + 2x
Lập BBT:
x | y-2 | 0 -1 | 0 0 | 0 1 | 3 2 | 8 3 | 15 4 | 24
Vẽ đồ thị.
d. y = -2x^2 - 2
Lập BBT:
x | y-2 | -6 -1 | -4 0 | -2 1 | -4 2 | -10 3 | -18 4 | -28
Vẽ đồ thị.
Sau khi lập BBT và vẽ đồ thị cho từng hàm số, bạn có thể dễ dàng quan sát và phân tích các đặc điểm của đồ thị như điểm cực trị, đồ thị hướng lên hay hướng xuống, đồ thị cắt trục hoành và trục tung ở những điểm nào, và các đặc tính khác của hàm số.
2 trên 20b)Xét pt hoành độ giao điểm của (P) và (d) có:
\(\dfrac{1}{2}x^2=mx-m+1\)
\(\Leftrightarrow x^2-2mx+2m-2=0\)
Có \(\Delta=4m^2-4\left(2m-2\right)=4\left(m^2-2m+1\right)+4=4\left(m-1\right)^2+4>0\forall m\)
=> (d) luôn cắt (P) tại hai điểm phân biệt
Theo định lí viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-2\end{matrix}\right.\)
Vì \(A;B\in\left(P\right)\Rightarrow\left\{{}\begin{matrix}y_1=\dfrac{1}{2}x_1^2\\y_2=\dfrac{1}{2}x_2^2\end{matrix}\right.\)
\(\Rightarrow y_1+y_2=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2=\dfrac{1}{2}\left(x_1+x_2\right)^2-x_1x_2\)\(=\dfrac{1}{2}.\left(2m\right)^2-\left(2m-2\right)=2m^2-2m+2\)
Vậy...
a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)
b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)
\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)
do d đi qua B =>ta có
0=3a+b(1)
lại có: phương trình hoành độ:
\(x^2=ax+b\Rightarrow x^2-ax-b=0\)
xét den ta:\(\Delta=a^2+4b\)
mà d tiếp xúc với P
=> a^2+4b=0(2)
từ 1 và 2 =>a,b rồi thay vào y=ax+b
=>pt
cách làm của mình cũng giống vậy nhưng ra a=0;b=0 hình như hơi vô lí nên ms hỏi các bn và deta=9a^2+4 mà