Cho x,y là số dương .Cho x+y=1.Chứng minh (1-1/x^2)(1-1/y^2)=1+2/xy. Nhanh lên giúp tớ nha!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}$
$=x+y+\frac{2}{x+y}$
$=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}$
$\geq \frac{x+y}{2}+2\sqrt{\frac{x+y}{2}.\frac{2}{x+y}}$ (áp dụng BDT Cô-si)
$\geq \frac{2\sqrt{xy}}{2}+2=\frac{2}{2}+2=3$
Vậy ta có đpcm
Dấu "=" xảy ra khi $x=y=1$
\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)
Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)
Như vậy (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)
Vì x2 và y2 >0
\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)
CHỈ GỢI Ý THÔI
M = (x^2 - xy) + (xy^2 - y^3) - x - y^2 + 5
M = x(x - y) + y^2(x - y) - x - y^2 + 5
.....
PHẦN N KO BIẾT LÀM
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.
\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1+\frac{2}{xy}\)
<=> \(1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}=1+\frac{2}{xy}\)
<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}-\frac{1}{x^2y^2}=0\)
<=> \(\left(\frac{1}{x}+\frac{1}{y}\right)^2-\frac{1}{x^2y^2}=0\)
<=> \(\left(\frac{x+y}{xy}\right)^2-\frac{1}{x^2y^2}=0\)
<=> \(\frac{1}{x^2y^2}-\frac{1}{x^2y^2}=0\) luôn đúng
=> đpcm