Tìm x,y biết:|x-2018y|+(y-1)2018=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nói chung cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
=> tất cả các số hạng đều bằng 0
sau đó tính ra là xong
a) | x - 1| + | y - 3| = 0
=> |x -1| = 0 => x = 1
|y-3| = 0 => y = 3
KL:...
b) | x - 1 | + |x-3| + |x-5| = 0
Ta thấy: \(\left|x-1\right|;\left|x-3\right|;\left|x-5\right|\ge0.\)
=> | x - 1 | = 0 => x = 1 mà | 1-3| không bằng 0 (Loại)
...
ko tìm được x
c) \(\left|x-2018y\right|+\left|x-2018\right|\le0\)
mà \(\left|x-2018y\right|;\left|x-2018\right|\ge0\)
=> | x - 2018y| + |x-2018| = 0
=> | x - 2018| = 0 => x = 2018
=> |x-2018y| = 0 => |2018-2018y| = 0 => y = 1
KL:...
b) \(\left|x-2018y\right|+\left(y-1\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-2018y\right|=0\\\left(y-1\right)^{2018}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018y=0\\y-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018y=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018.1=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2018=0\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2018\\y=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=2018\\y=1\end{matrix}\right.\)
c) \(\left|x+5\right|+\left(3y-4\right)^{2018}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+5\right|=0\\\left(3y-4\right)^{2018}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+5=0\\3y-4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\3y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\y=\dfrac{4}{3}\end{matrix}\right.\)
\(a,Taco:\)
\(\left(x-1\right)^2,\left(y-3\right)^8\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-3\right)^8=0\Leftrightarrow\hept{\begin{cases}x-1=0\Leftrightarrow x=1\\y-3=0\Leftrightarrow y=3\end{cases}}\)
\(b,Taco:\)
\(|x-2018|+\left(y-2019\right)^{2018}\ge0\)
\(\Rightarrow|x-2018|+\left(y-2019\right)^{2018}=0\Leftrightarrow\hept{\begin{cases}x-2018=0\Leftrightarrow x=2018\\y-2019=0\Leftrightarrow y=2019\end{cases}}\)
\(a,\left(x-1\right)^2+\left(y-3\right)^8=0\)
Vì \(\left(x-1\right)^2\ge0vs\forall x;\left(y-3\right)^8\ge0vs\forall y\)
\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^8=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Vậy x = 1, y = 3
\(\text{Vì}\hept{\begin{cases}\left|x-2018y\right|\ge0\\\left(y-1\right)^{2018}\ge0\end{cases}\Rightarrow\left|x-2018y\right|+\left(y-1\right)^{2018}\ge0}\)
Mà theo đề VT = 0
Nên dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2018y=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2018\\y=1\end{cases}}\)
Vậy x = 20 8 ; y = 1
\(\left|x-2018\right|+\left(y-1\right)^{2018}=0.\)
\(Nx:\)\(\left|x-2018\right|\ge0;\left(y-1\right)^{2018}\ge0\)
\(\Rightarrow VT=0\Leftrightarrow\left|x-2018\right|=0;\left(y-1\right)^{2018}=0\)
\(\left|x-2018\right|=0\Leftrightarrow x-2018=0\Leftrightarrow x=2018\)
\(\left(y-1\right)^{2018}=0\Leftrightarrow y-1=0\Leftrightarrow y=1\)