Cho một điểm O ở trong một tam giác đều ABC sao cho OA:OB:OC=\(a^2+b^2+c^2\) Tính số đo góc AOB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Dựng tam giác BEO vuông cân như đã được gợi ý.
Đặt AO=k --> BO=2k; CO=3k. Tam gíac BEO cân --> BE=BO=2k.
Tam giác ABE = tam giác CBO vì có
góc EBA= góc CBO (cùng phụ với góc ABO),
cạnh BE=BO=2k;
AB=BC
--> tg ABE=tgCBO (c.g.c) -
-> AE=CO =3k.
Xét tg AOE có AE=3k; AO=k; OE= BO√2 =2k√2.
Nhận thấy AO^2+OE^2 = k^2+ (2k√2)^2 =9k^2 =AE^2.
Suy ra tam giác AEO vuông tại O (Pitago đảo) --> góc AOB= 90+45 =135 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
A C B D Theo tính chất đường phân giác áp dụng cho \(\Delta ABC\) có BD là phân giác góc ABC \(\Rightarrow\frac{AB}{BC}=\frac{AD}{DC}=\frac{1}{2}\)
\(\Delta ABC\) vuông tại A\(\Rightarrow\tan B=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\widehat{B}\approx27\)
b, O C A B
Thấy \(\widehat{ACB}\) nội tiếp \(\left(O\right)\) chắn cung AB nhỏ
\(\Rightarrow\widehat{ACB}=\frac{1}{2}sđ\overline{AB}\left(1\right)\)
Thấy \(\widehat{AOB}\) chắn cung AB nhỏ \(\Rightarrow\widehat{AOB}=sđ\overline{AB}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{AOB}=2\widehat{ACB}=2\left(180^o-70^o-60^o\right)=2.50^o=100^o\)