Cho a1; a2; a3; …; a2007 là các số nguyên, b1; b2; b3;…; b2007 là một hoán vị (một cách sắp xếp theo một thứ tự khác) của các số a1; a2; a3; …; a2007.
Chứng tỏ rằng (a1- b1)(a2- b2) (a3 - b3) …(a2007 - b2007) là số chẵn.
Giúp vớiiiiiiii!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a1+a2+a3+......+a2015=0
\(\Rightarrow\)(a1+a2)+(a3+a4)+.....+(a2013+a2014)+a2015=0
Theo bài vì a1+a2=a2+a3=....a2015+a1=1 nên:
\(\Rightarrow\)1+1+1+.......+1+a2015=0(có 1007 chữ số 1)
\(\Rightarrow\)1007+a2015=0
\(\Rightarrow\)a2015=-1007
Mà: a2015+a1=1
\(\Rightarrow\)a1=1-(-1007)=1008
Học tốt!
Củ lạc giòn tan??? Định bán hàng à , BÁO CÁO SAI PHẠM luôn!!!
(a1-1)/9=(a2-2)/8=(a3-3)/7=...=(a9-9)/1
ap dung day ti so bang nhau:
=>(a1-1)/9=(a2-2)/8=(a3-3)/7=...=(a9-9)/1
=(a1-1+a2-2+a3-3+...+a9-9)/(1+2+3+...+8+9)
=[(a1+a2+a3+...+a9)-(1+2+3+...+9)]/(1+2+3+...+8+9)
=(90-45)/(45)=1
=>a1=a2=a3=a4=a5=a6=a7=a8=a9=10
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
Có:
a1+a2=a3+a4=...=a2015+a1=1
=>a1+a2+a3+a4+...+a2014+a2015=1007+a2015
Mà 1007+a2015=0
=>a2015=-1007.
=>a1=1--1007
a1=1008.
Chúc học tốt^^
tick để ủng hộ mình nha
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
(nếu thấy hay thì **** cho mình nhé)
\
Ta có:
a1+a2+...+a2002+a2003=(a1+a2)+...+(a2001+a2002)+a2003=0
=1 + 1+...+ 1+a2003(có 1001 số 1)=0
=1001+a2003=0
=>a2003=0-1001
=>a2003= -1001
Ta có:
a2003+a1=1
=>-1001+a1=1
=>a1=1-(-1001)
=>a1=1002
tick nha
giả sử \(\left(a1-b1\right).\left(a2-b2\right)...\left(a2007-b2007\right)\) là số chẵn
=> \(\left(a1-b1\right)+\left(a2-b2\right)+...+\left(a2007-b2007\right)\)là số chẵn (vì có 2007 cặp)
\(\left(a1-b1\right)+\left(a2-b2\right)+...+\left(a2007-b2007\right)\)
\(=\left(a1+a2+a3+...+a2007\right)-\left(b1+b2+b3+...+b2007\right)=0\)
=> điều giả sử đúng
=> đpcm