K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

\(\dfrac{4x^5+2x^4+4x^3-x-1}{2x^3+x-1}\)

\(=\dfrac{4x^5+2x^3-2x^2+2x^4+x^2-x+2x^3+x-1+x^2}{2x^3+x-1}\)

\(=2x^2+x+1+\dfrac{x^2}{2x^3+x-1}\)

=>Thương là A=2x^2+x+1

=2(x^2+1/2x+1/2)

=2(x^2+2*x*1/4+1/16+7/16)

=2(x+1/4)^2+7/8>=7/8

Dấu = xảy ra khi x=-1/4

a: P(x)=4x^5-4x^5-2x^3+x^4-3x^2+4x^2+3x-5x+1

=x^4-2x^3+x^2-2x+1

Q(x)=x^7-x^7-2x^6+2x^6+2x^3-2x^4+2x^4+x^5-x^5-x+5

=2x^3-x+5

b: P(x)+Q(x)

=x^4-2x^3+x^2-2x+1+2x^3-x+5

=x^4+x^2-3x+6

P(x)-Q(x)

=x^4-2x^3+x^2-2x+1-2x^3+x-5

=x^4-4x^3+x^2-x-4

22 tháng 6 2017

Trước hết, ta rút gọn các đa thức:

- Q(x) = 4x3 – 2x + 5x2 - 2x3 + 1 - 2x3

Q(x) = (4x3- 2x3- 2x3) – 2x + 5x2 + 1

Q(x) = 0 – 2x + 5x2 + 1

Q(x) = – 2x + 5x2 + 1

- R(x) = - x2 + 2x4 + 2x - 3x4 – 10 + x4

R(x) = - x2 + (2x4- 3x4+ x4) + 2x – 10

R(x) = - x2 + 0 + 2x – 10

R(x) = - x2 + 2x – 10

Sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm dần của biến ta có:

Q(x) = 5x2 – 2x + 1

R(x) = - x2 + 2x – 10

27 tháng 4 2022

thu gọn rồi chứng minh nó > 0

1 tháng 1 2019

28 tháng 1 2019

Đáp án C

Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy

Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.

31 tháng 7 2017

Đáp án C

Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .

Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3  trên R

* Bước 1: Tập xác định D = ℝ . Đạo hàm  y ' = 8 x 3 − 8 x   .

* Bước 2: Cho   y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .

* Bước 3: Ta có bảng biến thiên sau:

Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.

Chọn B

10 tháng 4 2020

dsssws

9 tháng 10 2018
NV
26 tháng 7 2021

1. Đề bài sai, các biểu thức này chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất

2.

\(A=\left(2x\right)^3-3^3-\left(8x^3+2\right)\)

\(=8x^3-27-8x^3-2\)

\(=-29\) 

\(B=x^3+9x^2+27x+27-\left(x^3+9x^2+27x+243\right)\)

\(=27-243=-216\)

26 tháng 7 2021

 sửa đề lại thành tìm Max nhé1, vì mấy ý này ko có min

\(1,=>D=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)

\(=-[\left(x-2\right)^2-7]=-\left(x-2\right)^2+7\le7\)

dấu"=" xảy ra<=>x=2

2, \(E=-2\left(x^2-x+\dfrac{5}{2}\right)=-2[x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}]\)

\(=-2[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}]\le-\dfrac{9}{2}\) dấu"=" xảy ra<=>x=1/2

3, \(F=-\left(x^2+4x-20\right)=-\left(x^2+2.2x+4-24\right)\)

\(=-[\left(x+2\right)^2-24]\le24\) dấu"=" xảy ra<=>x=-2