K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+8\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+8k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+8k}{11k^2-8}\)

\(\dfrac{7c^2+8cd}{11c^2-8d^2}=\dfrac{7d^2k^2+8dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+8k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2+8ab}{11a^2-8b^2}=\dfrac{7c^2+8cd}{11c^2-8d^2}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

8 tháng 12 2021

Tham khảo

cảm ơn rất nhiều

hihi

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2024

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk$. Khi đó:

$\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7(bk)^2+3bk.b}{11(bk)^2-8b^2}$

$=\frac{b^2(7k^2+3k)}{b^2(11k^2-8)}=\frac{7k^2+3k}{11k^2-8}(1)$
Và:

$\frac{7c^2+3cd}{11c^2-8d^2}=\frac{7(dk)^2+3dk.d}{11(dk)^2-8d^2}$

$=\frac{d^2(7k^2+3k)}{d^2(11k^2-8)}=\frac{7k^2+3k}{11k^2-8}(2)$

Từ $(1); (2)$ ta có đpcm. 

5 tháng 6 2016

Cùng thêm vào cả tử số và mẫu số một số đơn vị thì hiệu vẫn không đổi.
Hiệu của tử số và mẫu số là:   92 – 67 = 25
Hiệu số phần bằng nhau:   4 – 3 = 1 (phần)
Tử số của phân số mới là:   25 : 1 x 3 = 75
Số cần thêm vào là;  75 – 67 = 8
ĐS: 8
 

sai bet te nhe hi hi 

29 tháng 7 2021

Đặt  \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT:\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ VP:\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ \Rightarrow VT=VP\\ \Rightarrowđpcm\)

 

NV
29 tháng 7 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

Ta có:

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(kb\right)^2+3\left(kb\right).b}{11\left(kb\right)^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\) (1)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(kd\right)^2+3\left(kd\right)d}{11\left(kd\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\) (2)

(1),(2) \(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)