Tìm GTNN của \(A=\frac{x^2+1}{x}\) với:
a) \(0< x\le\frac{1}{2}\) b)\(x\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
*Chứng minh bất đẳng thức
Ta có: \(\forall a,b\ge0\) thì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) (đpcm)
Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a,b>0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\forall a,b>0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\forall a,b>0\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\forall a,b>0\)(đpcm)
áp dụng bất đẳng thức Cauchy ta có :
\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)
\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)
\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)
\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)
Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)
1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1
Tìm GTNN của P= x-1/y2 +y-1/x2 + x-1/x2
Giải
Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1
Theo AM-GM ta có:
P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1
Dấu = xảy ra⇔x=y=z=1√3
P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!
\(B=\frac{2}{1-x}+\frac{1}{x}\)
\(B=\left(\frac{2}{1-x}-1\right)+\left(\frac{1}{x}-1\right)+2\)
\(B=\frac{1+x}{1-x}+\left(\frac{1}{x}-1\right)+2\)
\(B=\left(\frac{1}{1-x}-1\right)+\frac{x}{1-x}+\left(\frac{1}{x}-1\right)+3\)
\(B=\frac{x}{1-x}+\frac{x}{1-x}+\frac{1-x}{x}+3\)
\(B=\frac{2x}{1-x}+\frac{1-x}{x}+3\)
Áp dụng BĐT AM-GM ta có:
\(B\ge2.\sqrt{2}+3\)
Dấu " = " xảy ra <=> \(x=\sqrt{2}-1\)( cái này bạn tự giải rõ )
KL:..............................
b)Từ \(a+b+c=6\Rightarrow\left(a+b+c\right)^2=36\)
\(\Rightarrow36=a^2+b^2+c^2+2\left(ab+bc+ca\right)=P+ab+bc+ca\)
\(\Rightarrow P=36-ab-bc-ca\). Cần tìm \(GTNN\) của \(ab+bc+ca\)
Không mất tính tổng quát giả sử \(a=max\left\{a,b,c\right\}\)
\(\Rightarrow a+b+c=6\le3a\Rightarrow2\le a\le4\). Lại có:
\(ab+bc+ca\ge ab+ac=a\left(b+c\right)=a\left(6-a\right)\ge8\)
Suy ra GTNN của \(ab+bc+ca=8\Leftrightarrow\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Vậy GTLNP là \(36-8=28\) khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
a)Dự đoán dấu "=" xảy ra tại \(x=\frac{1}{2}\),hay \(x^2=\frac{1}{4}\).Ta biến đổi như sau:
\(A=\frac{x^2+1}{x}=\frac{x^2+\frac{1}{4}+\frac{3}{4}}{x}=\frac{x^2+\frac{1}{4}}{x}+\frac{3}{4x}\) (1)
Do x > 0 nên \(\frac{x^2+\frac{1}{4}}{x}\ge\frac{2\sqrt{\frac{1}{4}x}}{x}=\frac{2x.\frac{1}{2}}{x}=1\) (BĐT Cô si) (2)
\(0< x\le\frac{1}{2}\Rightarrow\frac{1}{x}\ge2\Rightarrow\frac{3}{4x}\ge\frac{6}{4}=\frac{3}{2}\) (3)
Từ (1),(2) và (3) suy ra \(A\ge1+\frac{3}{2}=\frac{5}{2}\) hay \(A_{min}=\frac{5}{2}\Leftrightarrow x=\frac{1}{2}\)
b)Ta có: \(A=\frac{x^2+1}{x}=\frac{x^2}{x}+\frac{1}{x}=x+\frac{1}{x}\)
Dự đoán xảy ra cực trị tại x = 2,ta biến đổi như sau:
\(x+\frac{1}{x}=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\)
\(\ge2\sqrt{\frac{1x}{4x}}+\frac{3x}{4}=2.\frac{1}{2}+\frac{3x}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Vậy ....
Ngoài ra câu b) còn có thể giải như sau:
Dự đoán xảy ra cực trị tại x = 2,tức là x2 =4 ,ta biến đổi:
\(A=\frac{x^2+4-3}{x}=\frac{x^2+4}{x}-\frac{3}{x}\) (1)
Do x > 0 nên \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2.x.2}{x}=4\) (2)
Do \(x\ge2\Rightarrow\frac{1}{x}\le\frac{1}{2}\Rightarrow\frac{3}{x}\le\frac{3}{2}\Rightarrow\frac{-3}{x}\ge\frac{-3}{2}\) (3)
Từ (1),(2) và (3) suy ra \(A\ge4-\frac{3}{2}=\frac{5}{2}\)
Vậy ...
Chết nhầm,bạn sửa chỗ đoạn cuối: \(\frac{x^2+4}{x}\ge\frac{1\sqrt{4x^2}}{x}=\frac{2x.2}{x}=4\)
thành \(\frac{x^2+4}{x}\ge\frac{2\sqrt{4x^2}}{x}=\frac{2x.2}{x}=4\) mới chính xác nha!Mình đánh nhanh quá nên nhầm:v Đánh nhanh mà còn mất 11 phút =))))