Cmt: 4/a+5/b+3/c>hoặc=4(3/a+b +2/b+c +1/c+a) (a,b,c>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Chỗ y6 là 6.y hay là y6
b) \(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)
\(\Rightarrow2x-2-6x-6-8x-12=16\)
\(\Rightarrow\left(2x-6x-8x\right)-\left(2+6+12\right)=16\)
\(\Rightarrow-12x-20=16\)
\(\Rightarrow-12x=36\)
\(\Rightarrow x=-3\)
Vậy x = -3
c) \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)
\(\Rightarrow\left(x-5\right)^{x+1}\left[1-\left(x-5\right)^{12}\right]=0\)
\(\Rightarrow\left(x-5\right)^{x+1}=0\) hoặc \(1-\left(x-5\right)^{12}=0\)
+) \(\left(x-5\right)^{x+1}=0\Rightarrow x-5=0\Rightarrow x=5\)
+) \(1-\left(x-5\right)^{12}=0\Rightarrow\left(x-5\right)^{12}=1\)
\(\Rightarrow x-5=\pm1\)
+) \(x-5=1\Rightarrow x=6\)
+) \(x-5=-1\Rightarrow x=4\)
Vậy \(x\in\left\{6;4\right\}\)
Bài 2: a, thiếu dữ liệu
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\left[\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Ta có: \(\frac{a^3b^2c^{1930}}{a^{1935}}=\frac{a^3a^2a^{1930}}{a^{1935}}=\frac{a^{1935}}{a^{1935}}=1\)
Vậy \(\frac{a^3b^2c^{1930}}{a^{1935}}=1\)
mình ghi nhầm thui với lại bạn này gửi ngược ảnh, mình dùng máy tính không xem được