Cho hàm số : y = f(x) = -3x2 . C/mr hàm số y=f(x) đồng biến khi x<0 , nghịch biến khi x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = f(x) = -1,5 x 2 có hệ số a = -1,5 < 0 nên hàm số đồng biến khi x < 0, nghịch biến khi x > 0.
đồng biến khi a=(2m+3) >0
nghịch biến khi a=(2m+3) <0
rồi tính ra là ra m
đúng ko ạ
a, Để y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1
y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1
y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1
b, f(1) = 2
\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2
\(\Leftrightarrow\) m - 1 + 2m - 3 = 2
\(\Leftrightarrow\) m = 2
Với m = 2 ta có:
f(2) = (2 - 1).2 + 2.2 - 3 = 3
Vậy f(2) = 3
c, f(-3) = 0
\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0
\(\Leftrightarrow\) 2m = 3
\(\Leftrightarrow\) m = 1,5
Vì m > 1 (1,5 > 1)
\(\Rightarrow\) m - 1 > 0
hay a > 0
Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R
Chúc bn học tốt!
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến
b: Khi x>0 thì y<0
=> Hàm số nghịch biến
Khi x<0 thì y<0
=> Hàm số đồng biến
a: Khi x>0 thì y>0
=> Hàm số đồng biến
Khi x<0 thì y<0
=> Hàm số nghịch biến
+) Với \(x< 0\)chọn \(x_1< x_2< 0\), ta có :
\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^4-x_2^4\right)+2\left(x_1^2-x_2^2\right)=\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)\)
Vì \(x_1< x_2< 0\) nên \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2< 0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)
Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)>0\)
\(\Rightarrow\hept{\begin{cases}x_1< x_2< 0\\f\left(x_1\right)>f\left(x_2\right)\end{cases}}\) => Hàm số nghịch biến.
+) Tương tự, với \(x\ge0\)ta chọn \(x_2>x_1\ge0\) thì ta có \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2\ge0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)
Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x_2>x_1\ge0\\f\left(x_2\right)>f\left(x_1\right)\end{cases}}\) => Hàm số đồng biến.
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-3x_1^2+3x_2^2}{x_1-x_2}=-3\left(x_1+x_2\right)\)
Khi x1<0; x2<0 thì x1+x2<0
=>A>0
=>Hàm số đồng biến
Khi x1>0; x2>0 thì x1+x2>0
=>A<0
=>hàm số nghịch biến