K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-3x_1^2+3x_2^2}{x_1-x_2}=-3\left(x_1+x_2\right)\)

Khi x1<0; x2<0 thì x1+x2<0

=>A>0

=>Hàm số đồng biến

Khi x1>0; x2>0 thì x1+x2>0

=>A<0

=>hàm số nghịch biến

24 tháng 3 2017

Hàm số y = f(x) = -1,5 x 2  có hệ số a = -1,5 < 0 nên hàm số đồng biến khi x < 0, nghịch biến khi x > 0.

3 tháng 5 2023

A :>

 

5 tháng 5 2016

đồng biến khi a=(2m+3) >0

nghịch biến khi a=(2m+3) <0

rồi tính ra là ra m

đúng ko ạ

5 tháng 5 2016

khi x>0

đồng biến thì khi 2m+3>0

khi x<0

nghịch biến khi 2m+3>0

11 tháng 1 2021

a, Để  y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1

y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1

 y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1

b, f(1) = 2 

\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2

\(\Leftrightarrow\) m - 1 + 2m - 3 = 2

\(\Leftrightarrow\) m = 2

Với m = 2 ta có:

f(2) = (2 - 1).2 + 2.2 - 3 = 3

Vậy f(2) = 3

c, f(-3) = 0

\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0

\(\Leftrightarrow\) 2m = 3

\(\Leftrightarrow\) m = 1,5

Vì m > 1 (1,5 > 1)

\(\Rightarrow\) m - 1 > 0

hay a > 0

Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R

Chúc bn học tốt!

a) 

+) Hàm số đồng biến \(\Leftrightarrow m>1\)

+) Hàm số nghịch biến \(\Leftrightarrow m< 1\)

b) Ta có: \(f\left(1\right)=2\) 

\(\Rightarrow m-1+2m+3=2\) \(\Leftrightarrow m=0\)

\(\Rightarrow f\left(2\right)=\left(0-1\right)\cdot2+2\cdot0-3=-5\)

c) Hàm số là hàm hằng

 

a: Khi x>0 thì y>0

=> Hàm số đồng biến

Khi x<0 thì y<0

=> Hàm số nghịch biến

b: Khi x>0 thì y<0

=> Hàm số nghịch biến

Khi x<0 thì y<0

=> Hàm số đồng biến

22 tháng 4 2016

ai làm có thưởng 2điem

a: Khi x>0 thì y>0

=> Hàm số đồng biến

Khi x<0 thì y<0

=> Hàm số nghịch biến

 

24 tháng 10 2016

+) Với \(x< 0\)chọn \(x_1< x_2< 0\), ta có : 

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^4-x_2^4\right)+2\left(x_1^2-x_2^2\right)=\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)\)

Vì \(x_1< x_2< 0\) nên \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2< 0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)>0\)

\(\Rightarrow\hept{\begin{cases}x_1< x_2< 0\\f\left(x_1\right)>f\left(x_2\right)\end{cases}}\) => Hàm số nghịch biến.

+) Tương tự, với \(x\ge0\)ta chọn \(x_2>x_1\ge0\) thì ta có \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2\ge0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x_2>x_1\ge0\\f\left(x_2\right)>f\left(x_1\right)\end{cases}}\) => Hàm số đồng biến.

18 tháng 8 2016

đồng biến thì m+2>0

nghịch biến thì m+2<0