\(\text{Cho x,y,z }\ne0\)và \(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}\)=\(a^2+b^2+c^2\)
CMR \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=k\)
\(\Rightarrow\hept{\begin{cases}a=kx;b=ky;c=kz\Rightarrow a^2=k^2x^2;b^2=k^2y^2;c^2=k^2z^2\\a+b+c=k\left(x+y+z\right)\end{cases}}\)
Có: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{x^2+y^2+z^2}{\left(kx^2+ky^2+kz^2\right)^2}=\frac{x^2+y^2+z^2}{k^2\left(x^2+y^2+z^2\right)^2}=\frac{1}{k^2\left(x^2+y^2+z^2\right)}\)
\(=\frac{1}{k^2x^2+k^2y^2+k^2z^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)
Đặt biểu thức trên là A
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne0\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Nên \(A=\frac{\text{[}\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2\text{]}.\left(a^2+b^2+c^2\right)}{\left(a.ak+b.bk+c.bk\right)^2}\)
\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right).\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)
\(=\frac{k^2\left(a^2+b^2+c^2\right).\left(a^2+b^2+c^2\right)}{\text{[}k\left(a^2+b^2+c^2\right)\text{]}^2}\)
\(=\frac{k^2.\left(a^2+b^2+c^2\right)^2}{k^2.\left(a^2+b^2+c^2\right)}\)
\(=1\)
Vậy A=1
à quên sửa dòng trên chỗ A=1 cái chỗ mẫu là \(k^2.\left(a^2+b^2+c^2\right)^2\)nhen :v
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne̸0\) thì \(x=ak;y=bk;z=ck.\)
Do đó : \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}\)
\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)^2}{k^2\left(a^2+b^2+c^2\right)^2}=1.\)
a) \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+b^2y^2+2abxy\)
\(\Leftrightarrow b^2x^2-2abxy+a^2y^2=0\)
\(\Leftrightarrow\left(bx\right)^2-2\cdot bx\cdot ay+\left(ay\right)^2=0\)
\(\Leftrightarrow\left(bx-ay\right)^2=0\Rightarrow bx=ay\Rightarrow\left(\frac{a}{x}=\frac{b}{y}\right)\)
b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)
\(=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)
\(\Leftrightarrow b^2x^2-2bxay+a^2y^2+b^2z^2-2bzcy+c^2y^2+a^2z^2-2azcx+c^2x^2=0\)
\(\Leftrightarrow\left(bx-ay\right)^2+\left(bz-cy\right)^2+\left(az-cx\right)^2=0\)
\(\hept{\begin{cases}bx=ay\\bz=cy\\az=cx\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\\frac{b}{y}=\frac{c}{z}\\\frac{a}{x}=\frac{c}{z}\end{cases}}\Rightarrow\left(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\right)}\)
c) \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2+2ab=2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a=b\)
\(\frac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\Leftrightarrow\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
tiếp theo làm theo Câu hỏi của Vương Nguyễn Thanh Triều - Toán lớp 8 - Học toán với OnlineMath