K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{9.10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{9}-\frac{1}{10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\left(1-\frac{1}{10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}.\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\frac{9}{10}x-\frac{9}{10}+\frac{1}{10}x=x-\frac{9}{10}\)

\(\Rightarrow\left(\frac{9}{10}x+\frac{1}{10}x\right)-\frac{9}{10}=x-\frac{9}{10}\)

\(\Rightarrow x-\frac{9}{10}=x-\frac{9}{10}\)

\(\Rightarrow x\inℝ\)

Vậy \(x\inℝ\)

a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)

\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)

=>-9/10=-9/10(luôn đúng)

b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)

=>347x+780=1552

=>347x=772

hay x=772/347

26 tháng 6 2019

\(\left(1\cdot2\right)^{-1}+\left(2\cdot3\right)^{-1}+\cdot\cdot\cdot+\left(9\cdot10\right)^{-1}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

26 tháng 6 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

12 tháng 6 2018

\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)

\(\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)

         \(\frac{11}{45}.x=\frac{23}{45}\)

                  \(x=\frac{23}{45}:\frac{11}{45}\)

                 \(x=\frac{23}{11}\)

12 tháng 6 2018

Gọi A=(1/1.2.3+ 1/2.3.4 +...+ 1/8.9.10) .x=23/45

    2A=3-1/1.2.3+ 4–2/2.3.4+ 5–4/3.4.5+ ... + 10–8/8.9.10

    2A=1/2 —1/2.3+ 1/2.3 — 1/3.4+ 1/3.4– 1/4.5 +...+1/8.9–1/9.10=1/2–1/9.10=44/90

     A=44/90 : 2=22/90

     x=23/45:A= 23/45 : 22/90=23/11= 2 1/1( hỗn số)

    

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

9 tháng 5 2019

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot10-x=10\)10

\(\left(1-\frac{1}{10}\right)\cdot10-10=x\)

\(x=10\cdot\left(1-\frac{1}{10}-1\right)\)

\(x=10\cdot-\frac{1}{10}=-1\)

9 tháng 5 2019

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right).10-x=10\)

\(\left[1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right].10-x=10\)

\(\left[1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\right].10-x=10\)

\(\left[1-\frac{1}{10}\right].10-x=10\)

\(\frac{9}{10}.10-x=10\)

\(9-x=10\)

\(x=9-10\)

\(x=-1\)

~ Hok tốt ~

11 tháng 2 2017

Trước hết ta thực hiện biểu thức trong ngoặc:

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{8.9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right)\)

\(=\frac{1}{2}.\frac{22}{45}\) \(=\frac{11}{45}\)

\(\Rightarrow\frac{11}{45}\) \(.x=\frac{22}{45}\)

\(\Rightarrow x=\frac{22}{45}:\frac{11}{45}\)

\(\Rightarrow x=2\)