G=(a+b)(1/a+1/b)với a,b>0và a+b=4
Tìm gtnn của G
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a+b\right)^2\ge4ab=16\Rightarrow a+b\ge4\Rightarrow a+b-4\ge0\)
\(P=\dfrac{1+b+1+a}{\left(1+a\right)\left(1+b\right)}=\dfrac{a+b+2}{ab+a+b+1}=\dfrac{a+b+2}{a+b+5}\)
\(P=\dfrac{3a+3b+6}{3\left(a+b+5\right)}=\dfrac{2\left(a+b+5\right)+\left(a+b-4\right)}{3\left(a+b+5\right)}\ge\dfrac{2\left(a+b+5\right)}{3\left(a+b+5\right)}=\dfrac{2}{3}\)
\(P_{min}=\dfrac{2}{3}\) khi \(a=b=2\)
Xét : a^2/b-1 + 4.(b-1) >= \(2\sqrt{\frac{a^2}{b-1}.4.\left(b-1\right)}\) = 4a
Tương tự : b^2/a-1 + 4.(a-1) >= 4b
<=> G + 4.(a-1)+(4.(b-1) >= 4a+4b
<=> G + 4a+4b-8 >= 4a+4b
<=> G >= 4a+4b-4a-4b+8 = 8
Dấu "=" xảy ra <=> a^2/b-1 = 4.(b-1) và b^2/a-1 = 4.(a-1) <=> a=b=2
Vậy GTNN của G = 8 <=> a=b=2
Tk mk nha
đúng rồi
đúng
đúng
100000000000000000000000000000000000000000000000000%
\(S=\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{d^2+1}\)
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
\(tương\) \(tự\) \(với:\dfrac{1}{b^2+1};\dfrac{1}{c^2+1};\dfrac{1}{d^2+1}\)
\(\Rightarrow S\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}+1-\dfrac{d}{2}=4-\left(\dfrac{a+b+c+d}{2}\right)=4-\dfrac{4}{2}=2\)
\(\Rightarrow min_S=2\Leftrightarrow a=b=c=d=1\)
\(4=2a^2+\dfrac{1}{a^2}+\dfrac{b^2}{4}=\left(a^2+\dfrac{1}{a^2}-2\right)+\left(a^2+\dfrac{b^2}{4}+ab\right)-ab+2\)
\(\Rightarrow4=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-ab+2\)
\(\Rightarrow ab=\left(a-\dfrac{1}{a}\right)^2+\left(a+\dfrac{b}{2}\right)^2-2\ge-2\)
\(M_{min}=-2\) khi \(\left\{{}\begin{matrix}a-\dfrac{1}{a}=0\\a+\dfrac{b}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;-2\right);\left(-1;2\right)\)
Ta có: \(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}\) (BĐT Cauchy-Schwarz)
\(=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)
\(\Rightarrow A\ge\dfrac{4}{3}\Rightarrow A_{min}=\dfrac{4}{3}\) khi \(\dfrac{a}{a+4}=\dfrac{b}{b+4}\)
\(\Rightarrow ab+4a=ab+4b\Rightarrow a=b=2\)
\(A=\dfrac{a^2}{a+4}+\dfrac{b^2}{b+4}\ge\dfrac{\left(a+b\right)^2}{a+b+8}=\dfrac{4^2}{4+8}=\dfrac{4}{3}\)
\(A_{min}=\dfrac{4}{3}\) khi \(a=b=2\)
a.b=25 > a=25/b
G= a+b = a+b
= 25/b + b
= 25 + b^2 >= 25
Vậy giá trị nn của biểu thức là 25 khi b^2=0
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
\(G=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{4}{a}+\frac{4}{b}\ge\frac{\left(2+2\right)^2}{a+b}=\frac{16}{4}=4\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=2\)
Vậy GTNN của \(G\)là \(4\) khi \(a=b=2\)
Chúc bạn học tốt ~
\(G=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+\frac{b}{a}+1=2+\left(\frac{a}{b}+\frac{b}{a}\right)\)
Ta có: \(a,b>0\)
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2.\sqrt{\frac{a}{b}.\frac{b}{a}}=2.1=2\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{b}{a}\Leftrightarrow a=b\)
\(\Rightarrow a=b=2\)
\(\Rightarrow G\ge2+2=4\)
\(G=4\Leftrightarrow a=b=2\)
Vậy \(G_{min}=4\Leftrightarrow a=b=2\)
Thấy thừa đk a+b=4
Đây là cách khác nhé.