K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2018

\(4y^2=2+\sqrt{199-x^2-2x}\)

Ta có \(4y^2\) là một số nguyên \(\Rightarrow2+\sqrt{199-x^2-2x}\) là số nguyên

\(\Rightarrow199-x^2-2x\) là số chính phương

Ta có \(199-x^2-2x\ge0\Leftrightarrow x^2+2x\le199\Leftrightarrow\left(x+1\right)^2\le200\Leftrightarrow\left(x+1\right)^2\in\left\{1;4;9;16;25;36;49;64;81;100;121;144;169;196\right\}\)

Ta có \(199-x^2-2x\) là số chính phương \(\Leftrightarrow200-\left(x+1\right)^2\) là số chính phương\(\Rightarrow\left(x+1\right)^2\in\left\{4;100;196\right\}\Leftrightarrow\left(x+1\right)\in\left\{\pm2;\pm10;\pm14\right\}\)\(\Leftrightarrow\)\(x\in\left\{1;-3;9;-11;13;-15\right\}\)

Nếu x=1 thì y=\(\pm2\)

Nếu x=-3 thì y=\(\pm2\)

Nếu x=9 thì y=\(\pm\sqrt{3}\)(loại)

Nếu x=-11 thì y=\(\pm\sqrt{3}\)(loại)

Nếu x=13 thì y=\(\pm1\)

Nếu x=-15 thì \(y=\pm1\)

Vậy (x;y)\(=\){(1;2);(1;-2);(-3;2);(-3;-2);(13;1);(13;-1);(-15;1);(-15;-1)}

30 tháng 11 2018

Ta có:

\(-x^2-2x-1=-\left(x+1\right)^2\le0\)

\(\Rightarrow\sqrt{199-x^2-2x}=\sqrt{200-\left(x+1\right)^2}\le\sqrt{200}=10\sqrt{2}\)

\(\Rightarrow2+\sqrt{199-x^2-2x}\le2+10\sqrt{2}\)

\(\Rightarrow4y^2\le2+10\sqrt{2}\)

\(\Rightarrow y^2\le\dfrac{2+10\sqrt{2}}{4}\)

Mà y2 là số chính phương và \(y\in Z\)

Nên \(y^2\in\left\{1;4\right\}\)

\(\Rightarrow y\in\left\{-1;1;2;-2\right\}\)

mình bấm máy cho nhanh nha

y -1 1 2 -2
x 13 13 1 1

28 tháng 9 2015

Ta biến đơi VT được: \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\left(\sqrt{200-\left(x+1\right)^2}\right)\)

Để vế trái xác định thì \(\left(x+1\right)^2\le200\)    \(\left(1\right)\).

Mặt khác : \(VP\) chia hết 2 mà 2 chia hết cho 2 nên \(\left(\sqrt{200-\left(x+1\right)^2}\right)\) chia hết cho 2

  hay \(200-\left(x+1\right)^2\) chia hết cho 4. VÌ 200 chia hêt cho 4. Nên \(\left(x+1\right)^2\) chia hết cho 4   \(\left(2\right)\)

mà \(\left(x+1\right)^2\) là số chính phương  \(\left(3\right)\)   (x là số nguyên)  

Từ (1) ;(2) và (3) ta có: \(\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow\left(x+1\right)\in\left(0;2;-2\right)\)

Từ đó tính được y.

tick mình nha

21 tháng 8 2021

Ta có \(VT=2+\sqrt{200-\left(x^2+2x+1\right)}=2+\sqrt{200-\left(x+1\right)^2}\)

Để VT xác định thì \(\left(x+1\right)^2\le200\left(1\right)\)

Mà \(VP⋮2\) nên \(\sqrt{200-\left(x+1\right)^2}⋮2\Leftrightarrow200-\left(x+1\right)^2⋮4\)

Mà \(200⋮4\) nên \(\left(x+1\right)^2⋮4\left(2\right)\)

Mà \(\left(x+1\right)^2\) là số chính phương \(\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Leftrightarrow\left(x+1\right)^2\in\left(0;4\right)\Leftrightarrow x+1\in\left\{-2;0;2\right\}\Leftrightarrow x\in\left\{-3;-1;1\right\}\)

Từ đó tính y nha

 

 

21 tháng 8 2021

Không biết là đúng không nữa cơ.

Ta có: \(4y^2=2+\sqrt{199-x^2-2x}=2+\sqrt{200-\left(x+1\right)^2}\le2+\sqrt{200}\)

\(\Rightarrow y^2\le\dfrac{1+5\sqrt{2}}{2}\Leftrightarrow-\sqrt{\dfrac{1+5\sqrt{2}}{2}}\le y\le\sqrt{\dfrac{1+5\sqrt{2}}{2}}\)

Mà y là số nguyên dương \(\Rightarrow1\le y\le2\Rightarrow y\in\left\{1;2\right\}\)

Tìm được y rồi thì tìm x nha.

25 tháng 9 2015

a, Ta có  \(199-x^2-2x=200-\left(x+1\right)^2\le200\to4y^2-2=\sqrt{199-x^2-2x}\le\sqrt{200}<15.\)  
Vì vậy \(4y^2<17\to4y^2\le16\to y^2\le4\to-2\le y\le2.\) (Do  \(x,y\) là số nguyên). 

Vậy có ba trường hợp:

  TH1. Nếu \(y=0\to0=2+\sqrt{199-x^2-2x}\)  (mâu thuẫn). 

  TH2. Nếu \(y=\pm1\to4=2+\sqrt{199-x^2-2x}\to4=200-\left(x+1\right)^2\to\left(x+1\right)^2=196\) 
\(\to x+1=\pm14\to x=13,-15.\)  
Vậy ta thu được 4 nghiệm là \(\left(13,\pm1\right),\left(-15,\pm1\right)\).

 TH2. Nếu \(y=\pm2\to16=2+\sqrt{199-x^2-2x}\to196=200-\left(x+1\right)^2\to\left(x+1\right)^2=4\) 
\(\to x+1=\pm2\to x=1,-3.\)

Vậy ta thu được 4 nghiệm là \(\left(1,\pm2\right),\left(-3,\pm2\right)\).

Tóm lại phương trình có 8 nghiệm nguyên là \(\left(13,\pm1\right),\left(-15,\pm1\right)\)\(,\left(1,\pm2\right),\left(-3,\pm2\right)\).

b.  Đầu tiên ta thấy nếu \(y<0\to3^y=\frac{1}{3^{-y}}\)  không phải là số nguyên. Vậy \(y\ge0.\)  Nếu \(y\ge2\to3^y\vdots9\to x^2-5x+7\vdots9\to4x^2-20x+28\vdots9\to\left(2x-5\right)^2+3\vdots9.\) Đặc biệt ta suy ra \(\left(2x-5\right)^2\vdots3\to2x-5\vdots3\to\left(2x-5\right)^2\vdots9.\)   Mà \(\left(2x-5\right)^2+3\vdots9\to3\vdots9,\)  vô lí.

Do vậy mà \(y<2\to y=0,1.\)

Với \(y=0\to x^2-5x+7=1\to x^2-5x+6=0\to x=2,3.\)

Với \(y=1\to x^2-5x+7=3\to x^2-5x+4=0\to x=1,4.\)

Tóm lại phương trình sẽ có 4 nghiệm nguyên là \(\left(x,y\right)=\left(2,0\right),\left(3,0\right),\left(1,1\right),\left(4,1\right).\)

 

2 tháng 2 2020

\(x^2-y^2+2x-4y-10=0\)

\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)

\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)

\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)

\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)

Ta có bảng GT:

x+y+315-1-5
x-y-151-5-1
x22-4-4
y-400-4

Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)

x,y nguyên dương là:

=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 1:
$x^2y+4y=x+6$

$\Leftrightarrow y(x^2+4)=x+6$

$\Leftrightarrow y=\frac{x+6}{x^2+4}$

Để $y$ nguyên thì $\frac{x+6}{x^2+4}$ nguyên

$\Rightarrow x+6\vdots x^2+4(1)$

$\Rightarrow x^2+6x\vdots x^2+4$

$\Rightarrow (x^2+4)+(6x-4)\vdots x^2+4$

$\RIghtarrow 6x-4\vdots x^2+4(2)$

Từ $(1); (2)\Rightarrow 6(x+6)-(6x-4)\vdots x^2+4$

$\Rightarrow 40\vdots x^2+4$

$\Rightarrow x^2+4\in\left\{4; 5; 8; 10; 20;40\right\}$ (do $x^2+4$ là số nguyên $\geq 4$)

$\Rightarrow x\in\left\{0; \pm 1; \pm 2; \pm 4; \pm 6\right\}$

Đến đây thay vào tìm $y$ thôi.

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Bài 2:
 

Lấy PT(1) trừ PT (2) theo vế thu được:

$3x=5y-2$
$\Leftrightarrow x=\frac{5y-2}{3}$

Thay vào PT(1) thì:

$(2.\frac{5y-2}{3}+1)(y+2)=9$

$\Leftrightarrow 10y^2+19y-29=0$

$\Leftrightarrow (y-1)(10y+29)=0$

$\Rightarrow y=1$ hoặc $y=\frac{-29}{10}$

Với $y=1\Rightarrow x=\frac{5y-2}{3}=1$

Với $y=\frac{-29}{10}\Rightarrow x=\frac{5y-2}{3}=\frac{-11}{2}$