K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2018

Ta có : \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)-2^{32}\)

\(=\left(2^{32}-1\right)-2^{32}\)

\(=-1\)

31 tháng 10 2018

(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32

=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)-2^32=(2^4-1)(2^4+1)(2^8+1)(2^16+1)-2^32

=(2^8-1)(2^8+1)(2^16+1)-2^32=(2^16-1)(2^16+1)-2^32=2^32-1-2^32=-1

a) Ta có: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

29 tháng 3 2019

Ta có

N   =   ( 2   +   1 ) ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     ( 2 16   +   1 )   =   3 ( 2 2   +   1 ) ( 2 4   +   1 ) ( 2 8   +   1 )     ( 2 16   +   1 )   =   [ ( 2 2   –   1 ) ( 2 2   +   1 ) ] ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 4   –   1 ) ( 2 4   +   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 8   –   1 ) ( 2 8   +   1 ) ( 2 16   +   1 )     =   ( 2 16   -   1 ) ( 2 16   +   1 )   = 2 16 2 − 1 = 2 32 − 1 M à   2 32 − 1 > 2 32 ⇒   N < M

Đáp án cần chọn là: A

19 tháng 6 2021

`A=(2-1)(2+1)(2^2+1)...(2^16+1)`

`=(2^2-1)(2^2+1)....(2^16+1)`

`=(2^4-1)....(2^16+1)`

`=2^32-1<2^32`

`=>A<B`

Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)A. M > N                      B. M < N                    C. M = N                         D. M = N – 1Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8xA. 5                         B. -5                               C. 8                                       D.-8  Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khiA. x = 9                           B. x = 10                 C. x...
Đọc tiếp

Câu 21So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

A. M > N                      B. M < N                    C. M = N                         D. M = N – 1

Câu 22Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x

A. 5                         B. -5                               C. 8                                       D.-8  

Câu 23Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi

A. x = 9                           B. x = 10                 C. x = 11                              D.x = 12

Câu 24Kết quả của phép chia 15x3y4 : 5x2y2 là

A. 3xy2                            B. -3x2y                        C. 5xy                                  D. 15xy2

Câu 25Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là

A. 3y2 + 2xy – x2                B. 3y2 + 2xy + x2           C. 3y2 – 2xy – x2                        D. 3y2 + 2xy

1
23 tháng 11 2021

Câu 21So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

A. M > N                      B. M < N                    C. M = N                         D. M = N – 1

Câu 22Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x

A. 5                         B. -5                               C. 8                                       D.-8  

Câu 23Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi

A. x = 9                           B. x = 10                 C. x = 11                              D.x = 12

Câu 24Kết quả của phép chia 15x3y4 : 5x2y2 là

A. 3xy2                            B. -3x2y                        C. 5xy                                  D. 15xy2

Câu 25Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là

A. 3y2 + 2xy – x2                B. 3y2 + 2xy + x2           C. 3y2 – 2xy – x2                        D. 3y2 + 2xy

5 tháng 10 2020

a,số A lớn hơn

b,số C lớn hơn

22 tháng 10 2020

a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)

Mà B = 20062

=> 20062 - 1 < 20062 

=> A < B

b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B =  (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)

                B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1

Mà C = 232

=> B < C 

c) Tương tự như câu b

10 tháng 12 2023

1,

Đặt \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\left(2-1\right)A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(1A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(A=2^{32}-1\)

Vậy \(A=2^{32}-1\)

2, \(x^2-6x=-9\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(x-3=0\)

\(x=3\)

Vậy \(x=3\)

11 tháng 12 2020

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

9 tháng 7 2021

\(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

Đặt : \(P=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)