tìm x
\(\left(x-9\right)^{1000}+\left(x-100\right)^{2000}=1\)
ai làm nhanh nhất tớ 3 cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}=1\)
+) Với \(x=99\)\(;\)\(x=100\) thì \(VT=1\) hay \(x=99\)\(;\)\(x=100\) là nghiệm của pt
+) Với \(x< 99\) thì \(\left(x-99\right)^{1000}>0\)\(;\)\(\left(x-100\right)^{2000}>1\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}>1\) ( pt vô nghiệm )
+) Với \(x>100\) thì \(\left(x-99\right)^{1000}>1\)\(;\)\(\left(x-100\right)^{2000}>0\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}>1\) ( pt vô nghiệm )
+) Với \(99< x< 100\) thì \(0< x-99< 1\)\(;\)\(-1< x-100< 0\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}< \left|x-99\right|=x-99\)\(;\)\(\left(x-100\right)^{2000}< \left|x-100\right|=100-x\)
\(\Rightarrow\)\(\left(x-99\right)^{1000}+\left(x-100\right)^{2000}< x-99+100-x=1\) ( pt vô nghiệm )
Vậy nghiệm của phương trình là \(x=99\) hoặc \(x=100\)
Chúc bạn học tốt ~
a) \(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=9\)
b) \(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^{22}\)
\(\Leftrightarrow\left(\frac{1}{9}\right)^x=\left(\frac{1}{3}\right)^{66}\)
\(\Leftrightarrow x=66\)
\(\left(x-2\right)^{2016}=\left(x-2\right)^{2014}\)
\(\Rightarrow x-2\in\left\{0;1;-1\right\}\)
Nếu x - 2 = 0 => x = 2
Nếu x - 2 = 1 => x = 3
Nếu x - 2 = -1 => x = 1
a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)
Ta có: \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\)
Dấu = xảy ra khi :
\(\frac{x}{5}+\frac{23}{2}=0\Leftrightarrow\frac{x}{5}=-\frac{23}{2}\Leftrightarrow x=-\frac{115}{2}\)
\(y-\frac{14}{3}=0\Leftrightarrow y=\frac{14}{3}\)
Vậy ..............
Ta có:
a) \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)
\(\left|y-\frac{14}{3}\right|\ge0\forall y\)
=> \(\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{x}{5}+\frac{23}{2}=0\\y-\frac{14}{3}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
Vậy Min của A = 2019 tại \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)
câu b tượng tự
1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)
Dấu "=" xảy ra khi x=y=1
Máy mình bị lỗi nên ko nhìn được các bài tiếp theo
Chúc bạn học tốt :)
Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2
Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0
rút 4 ra ngoài nhan bạn 4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2
mik xét cái này cho dễ nhìn nhan
2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2
= (x+1/x)^2(2-x^2-1/x^2)
= -(x+1/x)^2(x^2-2+1/x^2)
= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2
thế ở trên ta có
4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2
4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16
4.4=x^2+8x+16
suy ra x^2+8x=0
x(x+8)=0
suy ra x=0 hoặc x=-8
mak nhìn để bài thì x=0 ko được nên x=-8
\(\left(x+3\right)^3-x\left(3x-1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2-6x+1\right)+8x^3-4x^2+2x+4x^2-2x+1=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3-4x^2+2x+4x^2-2x+1-28=0\)
\(\Leftrightarrow15x^2+26x=0\)
\(\Leftrightarrow15x\left(x+\frac{26}{15}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}15x=0\\x+\frac{26}{15}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{26}{15}\end{cases}}}\)
Dùng phương pháp giảm bậc đê! Bậc cao kiểu này ai giải nổi!!
\(\left(x-9\right)^{1000}+\left(x-100\right)^{2000}=1\)
\(\Leftrightarrow\left(x-9\right)^{1000}+\left[\left(x-100\right)^2\right]^{1000}=1\)
\(\Leftrightarrow\left(x-9\right)+\left(x-100\right)^2=1\)
Suy ra không có x nào thỏa mãn
vì (x-9)1000có số mũ chẵn
(x-100)2000có số mũ chẵn
suy ra cả hai thừa số trên sẽ ko âm
vậy để (x-9)1000+(x-100)2000=1 ta có 2 trường hợp
th1: (x-9)1000=1;(x-100)2000=0
vậy x sẽ ko thỏa mãn cả 2 điều kiện trên
th2:(x-9)1000=0;(x-100)2000=1
vậy x sẽ ko thỏa mãn cả hai điều kiện
vậy x ko có kết quả