phân tích đa thức thành nhân tử:
\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c\)
\(=\left(a+b\right)^2+2.c\left(a+b\right)+c^2+\left(a+b\right)^2-2.c\left(a+b\right)+c^2-4c^2\)
\(=a^2+2ab+b^2+2ca+2cb+c^2+a^2+2ab+b^2-2ca-2cb+c^2-4c^2\)
\(=2a^2+4ab+2b^2-2c^2\)
\(=2\left(a^2+2ab+b^2-c^2\right)\)
\(=2\left[\left(a+b\right)^2-c^2\right]\)
\(=2\left(a+b+c\right)\left(a+b-c\right)\)
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left[c^2-a^2+a^2-b^2\right]+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)-\left(b+c\right)\left(c^2-a^2\right)-\left(b+c\right)\left(a^2-b^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a+b-b-c\right)+\left(c^2-a^2\right)\left(c+a-b-c\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-c\right)+\left(c-a\right)\left(c+a\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(a+b-c-a\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Chúc bạn học tốt.
\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)
\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)
\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)
\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)
\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)
\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
\(=\left(a+b+c\right)^2+\left(a+b-c+2c\right)\left(a+b-c-2c\right)\)
\(=\left(a+b+c\right)^2+\left(a+b+c\right)\left(a+b-3c\right)\)
\(=\left(a+b+c\right)\left(a+b+c+a+b-3c\right)\)
\(=\left(a+b+c\right)\left(2a+2b-2c\right)\)
\(=2\left(a+b+c\right)\left(a+b-c\right)\)