Cho đường tròn (O;R) và dây cung AB, vẽ đường kính CD vuông góc với AB tại K( D thuộc cung nhỏ AB). Lấy điểm M thuộc cung nhỏ BC, DM cắt AB tại F, CM cắt AB tại E
a) Chứng minh tứ giác CKFM nội tiếp
b) DF.DM=DA2
c) \(\dfrac{FB}{EB}=\dfrac{FK}{AK}\)
a: Xét tứ giác CKFM có góc CKF+góc CMF=180 độ
nên CKFM là tứ giác nội tiếp
b: Xét ΔDAF và ΔDMA có
góc DAF=góc DMA
góc ADF chung
Do đó: ΔDAF đồng dạng với ΔDMA
=>DA/DM=DF/DA
hay DA^2=DM*DF