K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)

15 tháng 7 2019

A = 1 + 3 + 5 + 7 + ... + 2n + 1

   = \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)

   = \(\left(n+1\right).\left(n+1\right)\)

   = \(\left(n+1\right)^2\)

=> A là số chính phương (đpcm)

b) \(2+4+6+...+2n\)

\(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)

\(n.\left(n+1\right)\)

\(n^2+n\)

\(\Rightarrow\)B không là số chính phương

16 tháng 4 2016

Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương

16 tháng 4 2016

Ta có : A có tổng các chữ số bằng 12 ,do đó A chia hết cho 3. (1).
Lại có A có chữ số tận cùng là 008 do đó A chia hết cho 8 (2).
Từ (1) và (2) : ta có A chia hết cho 3 và 8 mà (3;8)=1 nên A chia hết cho 24
Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.