K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Giả sử phản chung : \(x^2-xy+y^2< 0\)

\(\Rightarrow\)\(2.\left(x^2-xy+y^2\right)< 0\)( TOm lại la : Dương x Âm = Âm

\(\Rightarrow\)\(2x^2-2xy+2y^2\)

\(\Rightarrow\)\(\left(x^2-2xy+y^2\right)+x^2+y^2=\left(x+y\right)^2+x^2+y^2\ge0\)\(\forall x,y\)

Từ đó \(\Rightarrow\)ĐPCM

17 tháng 10 2017

\(x^2-xy+y^2=x^2-2.x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2+\frac{3y^2}{4}\)\(=\left(x-\frac{1}{2}y\right)^2+\frac{3y^2}{4}\ge0\) với mọi x,y.

13 tháng 12 2018

A = \(x^3-y^3-3xy\left(x-y\right)-\left(x^2-2xy+y^2\right)+3xy\left(x-y\right)\)

\(\left(x-y\right)^3-\left(x-y\right)^2+3xy\left(x-y\right)\)

\(5^3-5^2+3.\left(-6\right).5\)

\(125-25-90=10\)

11 tháng 9 2020

x( 1 + y ) - y( xy - 1 ) - x2y

= x + xy - xy2 + y - x2y

= ( x + y ) + ( xy - xy2 - x2y )

= ( x + y ) + xy( 1 - y - x )

= ( x + y ) + xy[ -( x + y - 1 ) ]

= ( x + y ) - xy( x + y - 1 ) (*)

Với x + y = 5 ; xy = 2

(*) = 5 - 2( 5 - 1 ) = 5 - 2.4 = -3

Bài làm :

Đặt  \(A=x\left(1+y\right)-y\left(xy-1\right)-x^2y\)

\(=x+xy-xy^2+y-x^2y\)

\(=\left(x+y\right)+\left(xy-xy^2-x^2y\right)\)

\(=\left(x+y\right)+xy\left(1-y-x\right)\)

\(=\left(x+y\right)+xy\left[1-\left(y+x\right)\right]\)

Thay x + y = 5 và xy = 2 vào biểu thức trên , ta có :

\(A=5+2\left(1-5\right)\)

\(=5+2.\left(-4\right)\)

\(=-3\)

Vậy giá trị của biểu thức bằng -3 khi x + y = 5 và xy = 2 .

Học tốt

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

11 tháng 5 2020

\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)

\(x^4-x^3+2x^2-x+1=\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2+1\right)\)

Ta có: \(\left(x+1\right)^2\ge0;\forall x\)

\(x^2+1>1\)\(\forall x\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0,\forall x\)

Vậy \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0;\forall x\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs