Cmr : A = (x-1)(x-3)(x-4)(x-6)+10 > hoặc = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5x\left(x-3\right)^2-5\left(x-1\right)^3+15\left(x-4\right)\left(x+4\right)\le10\)
\(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15\left(x^2-16\right)\le10\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240\le10\)
\(\Leftrightarrow\left(5x^3-5x^3\right)-\left(30x^2-15x^2-15x^2\right)-\left(45x-15x\right)+5-240\le10\)
\(\Leftrightarrow30x-235\le10\)
\(\Leftrightarrow30x\le10+235\)
\(\Leftrightarrow30x\le245\)
\(\Leftrightarrow30x:30\le245:30\)
\(\Leftrightarrow x\le\dfrac{49}{6}\)
Vậy nghiệm của bất phương trình là: \(x\le\dfrac{49}{6}\)
b) \(\left(3x-2\right)\left(9x^2+6x+4\right)+27x\left(\dfrac{1}{3}-x\right)\left(\dfrac{1}{2}+x\right)\ge1\)
\(\Leftrightarrow27x^3-8+27x\left(\dfrac{1}{9}-x^2\right)\ge1\)
\(\Leftrightarrow27x^3-8+3x-27x^3\ge1\)
\(\Leftrightarrow\left(27x^3-27x^3\right)-8+3x\ge1\)
\(\Leftrightarrow-8+3x\ge1\)
\(\Leftrightarrow3x\ge1+8\)
\(\Leftrightarrow3x\ge9\)
\(\Leftrightarrow3x:3\ge9:3\)
\(\Leftrightarrow x\ge3\)
Vậy nghiệm của bất phương trình là \(x\ge3\)
a: =>5x(x^2-6x+9)-5(x^3-3x^2+3x-1)+15(x^2-16)<=10
=>5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-240<=10
=>30x-235<=10
=>30x<=245
=>x<=49/6
b: =>27x^3-8+27x(1/9-x^2)>=1
=>27x^3-8+3x-27x^3>=1
=>3x>=9
=>x>=3
Ta có : \(x+y=2< =>\left(x+y\right)^2=4< =>\left(\frac{x+y}{2}\right)^2=1\)
Bài toán quy về chứng minh \(xy\le\left(\frac{x+y}{2}\right)^2\)
\(< =>xy\le\frac{\left(x+y\right)^2}{4}< =>4xy\le x^2+y^2+2xy\)
\(< =>4xy-2xy\le x^2+y^2< =>\left(x-y\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng minh
\(A=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+10\)
\(A=\left(x-1\right)\left(x-6\right)\left(x-3\right)\left(x-4\right)+10\)
\(A=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+10\)
\(A=\left(x^2-7x\right)^2+18\left(x^2-7x\right)+72+10\)
\(A=\left(x^2-7x\right)^2+18\left(x^2-7x\right)+82\)
\(A=\left(x^2-7x\right)^2+2\left(x^2-7x\right).9+9^2+1\)
\(A=\left(x^2-7x+9\right)^2+1\)
Vì \(\left(x^2-7x+9\right)^2\ge0\)
\(\Leftrightarrow\left(x^2-7x+9\right)^2+1\ge1\)
suy ra đpcm